

Copropagating schemes for Dielectric Laser Accelerators

G. Torrisi¹, D. Mascali¹, <u>G. S. Mauro¹</u>, A. F. Usmani¹ A. Bacci², G. Sorbello^{1,4}, C. De Angelis³, A. Locatelli³

¹Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95123 Catania, Italy
 ²Istituto Nazionale di Fisica Nucleare–Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
 ³Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy
 ⁴Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy

Dielectric Laser Accelerators (DLA) : introduction

- **MOTIVATION**: strong need of particle accelerators working at higher and higher frequencies (reaching optical frequencies) to obtain high energy particle beams and **high accelerating gradient** for **research and medical applications**.
- Conventional radio frequency (RF) metallic accelerators are not suitable for optical application because of <u>electrical breakdown in metals</u> and their <u>high losses at optical frequencies</u>.

SOLUTION: employing dielectric structures

Main advantages of DLA:

- a) larger damage threshold of dielectrics near infrared with respect to metals;
- b) with the same maximum electric field (limited by the breakdown) shorter wavelength means higher *accelerating gradients per unit length;*
- c) consequential <u>reduction of size and fabrication costs.</u>
- Compact DLAs are possible by employing Electromagnetic Band Gap (EBG) structures based on the photonic crystals.

Dielectric Laser Accelerators (DLA) vs metallic accelerators

Copropagating schemes for Dielectric Laser Accelerators

What we mean for **Copropagating?**

VS

Cross-propagating schemes

New Acceleration Concepts. *"Dielectric Laser Acceleration", Joel England (SLAC)* Snowmass AF6 Meeting Sept 23, 2020]

[N. V. Sapra et al; Science, 367, 6473, 79-83 2020]
[E. A. Peralta et al; Nature, 503(7474):91-94, 2013.]
[Kent P. Wootton et al; Opt. Lett., 41(12):2696, 2016]
[D. Cesar et al; Nature Comm. Phys., 1(4):1-7, 2018]
[K. J. Leedle et al; Opt. Lett., 40(18):4344, 2015]

"transverse-illuminated" Phase Reset Device short interaction region (few µm) low energy gain per stage (few keV) cascading stages of acceleration is very challenging

Cross-propagating schemes

Electromagnetic Band Gap (EBG) structures

• Periodic pattern of dielectric material that, for some frequency range, prohibits the propagation of electromagnetic waves, forming a band-gap.

Photonic Crystal (PhC)-based Dielectric Laser Accelerator (DLA)

3D silicon woodpile waveguides

[G. S. Mauro et al., " in IEEE MTT, 68, 5, 1621-26, 2020] [G. Torrisi *et al., IEEE MWCL*, 30, 4, 347-350, 2020]

3D silicon **woodpile cavity** (in development...)

Copropagating schemes

Hollow-core waveguides for high power handling

٠

- Collinear <u>co-propagating</u> laser and particle beam
- High interaction impedance Z_c and accelerating gradient
- <u>Continuous wave (CW)</u> laser operation (1-5 µm)

2D longitudinal Photonic Crystal

[G. Torrisi et al 2019 J. Phys.: Conf. Ser. 1350 012060]

3D Silicon woodpile mode launcher

3D woodpile mode converter

[G. S. Mauro et al; 15th Metamaterials Conf. (Aug. 2021)] [Ziran Wu et al; Phys. Rev. ST Accel. Beams 17, 081301]

Copropagating <u>schemes</u> for Dielectric Laser Accelerators

What we mean for **<u>schemes?</u>**

We require:

- 1. an optical waveguide that is constructed out of dielectric materials;
- 2. transverse size on the order of a wavelength;
- 3. a supported mode with speed-of-light phase velocity in vacuum.

Photonic crystals - structures whose electromagnetic properties are spatially periodic - can meet these requirements.

Copropagating <u>schemes</u> for Dielectric Laser Accelerators

What we mean for *schemes?*

Solid core waveguides

Solid core waveguide, doesn't allow particle transit

40

20

0

-20

-40

-2

Ex, Ez (MV/m)

"Accelerating" mode - electric field Ez component (odd symmetry) "Fundamental" mode - electric field Ez component (even symmetry)

Zhao et al., «Design of a tapered slot waveguide dielectric laser accelerator for sub-relativistic electrons»; 2018

Slotted waveguide

	Simulators	$n_{\rm eff,mode1}$	$n_{\rm eff,mode2}$
•• • • •	COMSOL	2.04	1.99
Effective index computation	HFSS	2.0275	1.9712
	MATLAB(Full vector)	2.155726	2.106516

Mode 1: "fundamental" mode (even symmetry)
Mode 2: <u>"accelerating"</u> mode (odd symmetry)

Very close but <u>selectable</u> thanks to the launching "even/odd" Excitation field

f = 150 THz
$$n_{eff} = 1.9712$$
 $\beta = \frac{v}{c} = \frac{c}{n_{eff}} = 0.5$

<u>Tapered slot waveguide</u> for sub-relativistic electrons

 β variation due to the slot width size a tapering: the structure 'follows' the electron energy increase due to acceleration.

Copropagating <u>schemes</u> for Dielectric Laser Accelerators

2D photonic crystal waveguide

b) computation of the **projected band diagram** of a triangular lattice supercell

c) add a hollow-core linear defect to the supercell

2D photonic crystal waveguide

2D photonic crystal waveguide coupler

- Efficient coupling between the **launch** and the **accelerating** waveguide.
- The first waveguide (width $W_1 = 1.6d$) supports an **accelerating mode**.
- The second one (width $W_2 = 2.13d$) supports a **transverse mode**.
- Synchronization of an accelerating and a transverse mode by varying W.
- When the waveguides couple, efficient energy exchange is possible.

Copropagating <u>schemes</u> for Dielectric Laser Accelerators

3D woodpile structure

- Composed by a "pile" of rectangular $w \times h$ bricks disposed in layers stacked in the vertical direction, each layer rotated of 90° with respect from the layer below, whose centers are distant a period d.
- Creating a so called "defect channel", one or more modes can be trapped inside the defect and thus a waveguide is obtained.
- The guided mode can be either a 'launch' transverse electric mode (TE10-like) or a mode suitable for particle acceleration (TM01-like).

Woodpile waveguide

Mauro *et al.*, "Fabrication and Characterization of Woodpile Waveguides for Microwave Injection in Ion Sources," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 68, no. 5, pp. 1621-1626, May 2020, doi: 10.1109/TMTT.2020.2969395.

3D woodpile structure

- The **periodic structure** repeats in the stacking direction each four layers, creating a **frequency band-gap** where the EM propagation is suppressed.
- The band-gap can be calculated using the MIT Photonic Bands (MPB) tool considering an **unit cell with periodic boundary conditions**.
- Design procedure carried out using normalized frequency and normalized dimensions.
- Once the fundamental (normalized) parameters have been obtained, the structure can be scaled at the **final operating frequency**.
- By setting the period *d* the operating frequency can be selected : in order to operate at $f_c = 60$ THz, we choose $d = 2.082 \,\mu\text{m}$.

$$f_{c}(THz) \approx f_{norm} \times c/d$$

Woodpile unit cell

width $(\mathbf{w}) = 588 \text{ nm}$

height (\mathbf{h}) = 736 nm

3D woodpile structure

- Once the configuration that presents the largest band gap has been found, a supercell is realized and a hollow core defect is introduced.
- This defect can be tuned to support an electromagnetic mode that can be guided along the structure in the way to form a waveguide.

The **length** of the device along the defect direction (z axis) will depends on the desired output energy.

'Projected' band diagram of the accelerating waveguide, calculated along the defect propagating axis (z axis).

The confined TM01-like mode (red line) is clearly visible.

 $w_d = 2.429 \ \mu m$ $h_d = 2.209 \ \mu m$

Hollow core defect dimensions:

5000 nm hollow-core woodpile coupler

Structure dimensions: 5.2um x 7.8um x 3.42 um

- Wave is injected (and extracted) into the woodpile coupler by using two waveguide **splitters** (or optical fibers at optical frequencies).
- The bunch of particles is accelerated by the travelling wave along the hollow-core accelerating waveguide.

- The side-coupler consists of:
- 1. a **right-angled bend mode converter,** from **TE10-like launch mode** to **TM01-like mode** suitable **for particle acceleration;**
- 2. an **accelerating waveguide** whose length can be tuned in order to obtain the final energy.

Mauro et al., "Numerical Simulation of a Hollow-Core Woodpile-Based Mode Launcher for Dielectric Laser Accelerators", MDPI Applied Sciences, 2022

5000 nm hollow-core woodpile coupler

- Woodpile coupler tuned, in terms of S-parameters, to:
- a) maximize the I/O wave transmission;
- b) improve the TE10 to TM01-like mode conversion.
- The device possesses low loss (< 0.1 dB) inside the **operational bandwidth of 60.06-60.08 THz**.
- Full mode conversion at $f_0 \approx 60.074$ THz.

5000 nm hollow-core woodpile coupler

- From the electric field plot along the accelerating waveguide (length 3d = 1935 nm), it can be seen that:
- a) the longitudinal component |Ez| is predominant;
- b) the transversal components |Ex|, |Ey|, are almost equal to zero.

Accelerating gradient comparison

Slotted waveguide	2D PhC waveguide	3D woodpile
Zc = 1.5 kΩ	$Zc' = Zc \times h = 37.6 \Omega$	Zc = 11.4 kΩ
P _{inj} = 250 W	P _{inj} = 250 W	P _{inj} = 500 W
E0 = 0.4 GV/m @ λ = 1.55 μm	E0 = 63 MV/m @ λ = 1.55 μ m	E0 = 1.63 GV/m @ λ = 1.55 μ m
E0 = 0.32 GV/m @ λ = 2 μm	E0 = 48.5 MV/m @ λ = 2 μ m	E0 = 1.3 GV/m @ λ = 2 μ m
$F0 = 0.13 \text{ GV/m} @ \lambda = 5 \text{ µm}$	$F0 = 19.4 \text{ MV/m} @ \lambda = 5 \text{ µm}$	$F0 = 0.5 \text{ GV/m} @ \lambda = 5 \text{ µm}$

Example: 3D woodpile, $E0 = 0.5 \text{ GV/m} @ \lambda = 5 \mu \text{m}.$

To reach a final energy of 100 MeV, only a 21 cm long accelerating channel is sufficient.

Extremely-compact structure!

Silicon woodpile waveguide: fabrication & cold test at scaled at mm-wave frequencies

- high speed and precision dicing saws
- silicon wafers 850 µm thick
- stacking together 9 silicon layers
- geometrical tolerance of 10 µm

Design is frequency independent and valid at any working wavelength.

97.5

[G. Torrisi et al., IEEE Microwave and Wireless Components Letters, vol. 30, no. 4, pp. 347-350, 2020]

Woodpile structure fabrication - overview

- Layer deposition (min. feature size: 450 nm)
- General process involves building up the structure layer by layer, using silicon dioxide as a matrix in which silicon features are embedded.
- Then, a selective etch is done to remove the silicon dioxide, resulting in a free standing structure of silicon and vacuum.

- Direct laser writing (min. feature size: 100 nm)
- 3D printing for the microscopic world.
- By moving the focus of the laser beam three dimensionally, arbitrary 3D structures can be written into the volume of the material.

- C. McGuinness, R.L. Byer, E. Colby, B.M. Cowan, R.J. England, et al., "Woodpile structure fabrication for photonic crystal laser acceleration", *AIP Conf. Proc. 1086 (2009) 1, 544-549,* DOI: 10.1063/1.3080965;
- I. Sakellari, E. Kabouraki, D. Gray, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, M. Farsari, "High-resolution 3D woodpile structures by direct fs laser writing," Proc. SPIE 8456, Nanophotonic Materials IX, 84560E (15 October 2012); <u>https://doi.org/10.1117/12.930155</u>.

INFN-BOLOGNA (CNR IMM-Bologna e PoliTO - Chi-Lab)

TPP test pattern: a matrix with many woodpile structures (5 μm) ORMOCOMP / glass

AIM: determine the best printing parameters by varying laser power and velocity

Conclusion and perspectives

- The design of compact dielectric structures, based on PhCs, for future DLAs setups, has been presented.
- These devices allow co-propagation of the acceleranting wave and the beam.
- Improvements: energy gain efficiency and structure compactness.
- $E_0 \approx 1.6 \text{ GV/m} @ \lambda = 5 \text{ } \mu\text{m}$ with 500 W into the accelerating waveguide (woodpile structure).
- MICRON (MIniaturised aCceleRatOrs Network): INFN 5th Nat. Committee project. Ongoing.
- **Next step:** 5000 nm prototype realization through nanoscale techniques.
- **Next step: numerical study of DLA structures for low-\beta** (0.05 to 0.2) **particle acceleration (protons).**

 $\begin{array}{c} Patent \ pending \\ Metodo \ per \ progettare \ una \ struttura \ accelerante \ dielettrica \\ che \ supporta \ un \ modo \ TE_{210}\-like \ perturbato \\ (Ita. \ Patent \ pending \ n. \ 102021000021158) \end{array}$

By: G. S. Mauro, G. Torrisi, D. Mascali, G. Sorbello, S. Gammino (INFN-LNS), G. Della Valle (PoliMi)