Internal losses measurement of a dual-mode photodiode at cryogenic temperature

<u>C.Pepe^{1,2},</u> M.Rajteri¹, G. Brida¹

SOCIETÀ ITALIANA DI FISICA 108° Congresso Nazionale

www.inrim.it

WHAT YOU ARE, TAKES YOU FAR

Internal losses measurement with a dual-mode

photodiode at cryogenic temperature

Photons are converted into e-h pairs

Do all the photons convert into e-h pair?

Internal losses measurement with a dual-mode

photodiode at cryogenic temperature

Photons are converted into e-h pairs

Do all the photons convert into e-h pair?

Two physical effect to measure the same quantity: optical power

Internal losses measurement with a dual-mode

photodiode at cryogenic temperature

Photons are converted into e-h pairs

Do all the photons convert into e-h pair?

Two physical effect to measure the same quantity: optical power

Internal losses measurement with a dual-mode

photodiode at cryogenic temperature

Photons are converted into e-h pairs

Photodiode operated at 77K

SIF 108° Congresso Nazionale

Predictable Quantum Efficiency Detector (PQED)

The PQED is intended to become a **primary detector standard** for wavelengths **from 400 nm to 800 nm**

Predictable Quantum Efficiency Detector (PQED) The PQED is intended to become a **primary detector standard** for wavelengths **from 400 nm to 800 nm**

Induced junction photodiodes in a wedge trap configuration.

Predictable Quantum Efficiency Detector (PQED) The PQED is intended to become a **primary detector standard** for wavelengths **from 400 nm to 800 nm**

Induced junction photodiodes in a wedge trap configuration.

Predictable **internal losses** of the photodiodes: 1ppm at CT and 500 at RT

Calculable reflection losses

Predictable Quantum Efficiency Detector (PQED) The PQED is intended to become a **primary detector standard** for wavelengths **from 400 nm to 800 nm**

Induced junction photodiodes in a wedge trap configuration. **45°** 7-reflection trap

Predictable **internal losses** of the photodiodes: 1ppm at CT and 500 at RT

Calculable reflection losses

How do we verify the prediction of the internal losses?

C

Photocurrent mode

Electrical substitution mode

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

jC.

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Photocurrent mode

Physical effect: photons create electron-hole pair in pn junction

Electrical substitution mode

Physical effect: Temperature variation due to optical or electrical power

Internal losses

$$P_{ph} = \frac{I_{ph}}{\frac{e\lambda}{hc}(1 - \delta(\lambda))} = P_{sub}$$

Internal losses

$$P_{ph} = \frac{I_{ph}}{\frac{e\lambda}{hc}(1 - \delta(\lambda))} = P_{sub}$$
$$\delta(\lambda) = 1 - \frac{I_{ph}e\lambda}{P_{sub}hc}$$

SIF 108° Congresso Nazionale

C.Pepe -Internal losses measurement of a dual-mode photodiode at cryogenic temperature

INRIM ISTITUTO NAZIONALE DI RICERCA METROLOGICA

C

Optical setup

Electrical and thermal setup

Internal losses measurement at CT

 $\lambda = 632 \text{ nm}$ T= 79 K $V_{bias} = -5 V$ Power step= 4 μ W

30

P_{sub} = 152.7407 μW $\delta \approx 1000 \text{ ppm}$

Ice forming on surface of the diode

Performing long run measurement, we notice that the optical level was changing in time

Sildoja, Meelis, et al. "Predictable quantum efficient detector: I. Photodiodes and predicted responsivity." *Metrologia* 50.4 (2013): 385.

Manoocheri, F., et al. "Liquid nitrogen cryostat for predictable quantum efficient detectors." *Journal of Physics: Conference Series*. Vol. 972. No. 1. IOP Publishing, 2018.

- Cryostat modification to improve experimental condition
 - Vacuum < 1E-6 mbar
 - Radiation shield

R

- Cryostat modification to improve experimental condition
 - Vacuum < 1E-6 mbar
 - Radiation shield
- Improvement of measurement procedure at room temperature

- Cryostat modification to improve experimental condition
 - Vacuum < 1E-6 mbar
 - Radiation shield
- Improvement of measurement procedure at room temperature
 - Setup was built to work likewise at 77 K and 300 K

- Cryostat modification to improve experimental condition
 - Vacuum < 1E-6 mbar
 - Radiation shield
- Improvement of measurement procedure at room temperature
 - Setup was built to work likewise at 77 K and 300 K
 - New laser with power range up to 2 mW

- Cryostat modification to improve experimental condition
 - Vacuum < 1E-6 mbar
 - Radiation shield
- Improvement of measurement procedure at room temperature
 - Setup was built to work likewise at 77 K and 300 K
 - New laser with power range up to 2 mW
 - xy stage mounted

- Cryostat modification to improve experimental condition
 - Vacuum < 1E-6 mbar
 - Radiation shield
- Improvement of measurement procedure at room temperature
 - Setup was built to work likewise at 77 K and 300 K
 - New laser with power range up to 2 mW
 - xy stage mounted
 - Preliminary internal losses measurement of 2000 ppm and 5000 ppm

at 1.5 mW and 2.0 mW respectively

PQED simpler than cryogenic radiometer:

Fast

Small

Chip

Thank you for the attention

(1)

SOCIETÀ ITALIANA DI FISICA 108° Congresso Nazionale INRIM ISTITUTO NAZIONALE

www.inrim.it

RICERCA METROLOGICA

WHAT YOU ARE, TAKES YOU FAR

C

WP4: 10/11/2021 Online meeting

Setup

WP4: 23/03/2022 Online meeting

WP4: 23/03/2022 Online meeting

- 2. IQD measurement of PQED in 3-reflection trap at CT
 - The cryostat is baked while pumping before cooling down with LN_2
- In the 1st cooldown after the modifications, the vacuum at RT was good (p=5E-6 mbar). When filling with LN2 one of the new O-ring (in FKM) freezed and we lost the vacuum completely (p>E-1 mbar).
- In the 2nd cooldown at RT p=5E-6 mbar \rightarrow at CT p=1E-3 mbar.
 - In the 3rd cooldown at RT p=1E-6 mbar → at CT p= 8.9E-7 mbar
- During Easter holiday a blackout caused a stop of the pumps while cryostat was cold. Oil went in the system. Brewster window get dirty. (the trap was not inside the cryostat)

