

HVCMOS modules for experiments at e⁺e⁻ colliders

Riccardo Zanzottera

Attilio Andreazza Fabrizio Sabatini Antonio Carbone Bianca Raciti

Outlines

- Why HVCMOS?
 - e+e- detector requirements
 - IDEA
 - **DMAPS**
- ATLASPIX3
 - Single chip characterization
 - Quad modules
 - Serial powering

e+e- Detector Requirements

- Similar approaches for ILC, CLIC, FCCee, CepC:
 - High resolution **pixel vertex detector**
 - Either full silicon tracker or central gas chamber + Si wrapper

IDEA concept

- International Detector for
 Electron-positron Accelerators
- Central tracking device:
 - light Drift Chamber
- Silicon detectors for precision measurements
 - vertex region
 - silicon wrapper
- Thin solenoid with 2T field
- Dual readout calorimeter
 - supplemented by a pre-shower detector
- Muon chambers in the solenoid return yoke

IDEA - DMAPS (1)

High precision impact parameter 0.5vertex region zoom reconstruction with low mass **vertex** detector Supplemented by coarser/faster silicon **detectors** in front of the drift chamber 2.5 2.0 1.0 1.5 0.5 Precision silicon layer around central Solenoid drift chamber 20 **Depleted Monolithic Active Pixels Sensors** CMOS process allows to produce large Ο 1.5 areas, fast and cheap **no hybridization** (bump-bonding) DCH Ο 1.0 needed single detection layer, can be thinned Ο 0.5keeping high signal efficiency and low noise rate 25 1.5 2.0

IDEA - DMAPS (2)

- High precision impact parameter reconstruction with low mass vertex detector
- Supplemented by coarser/faster silicon detectors in front of the drift chamber
- Precision silicon layer around central drift chamber
- Depleted Monolithic Active Pixels Sensors
 - CMOS process allows to produce large areas, fast and cheap
 - no hybridization (bump-bonding) needed
 - single detection layer, can be thinned keeping high signal efficiency and low noise rate

- Sensor matrix and readout integrated in a single piece of silicon
- Pixel electronics embedded in n- and p-wells
- **Deep n-well** to **isolate** shallow wells from p-type substrate and as **sensor electrode**

ATLASPIX3

• ATLASPIX3 features

- full-reticle size 20×21 mm² monolithic pixel sensor
- \circ TSI 180 nm process on 200 Ω cm substrate
- \circ pixel size 50×150 μm^2 (25×150 μm^2 on recent prototypes)
- breakdown voltage ~-60 V
- up to 1.28 Gbps downlink
- 132 columns of 372 pixels
- digital part of the matrix located on periphery
- 25 ns timestamping
- both triggerless and triggered readout possible:
 - two End of Column buffers
 - 372 hit buffers for triggerless readout
 - 80 trigger buffers for triggered readout
- INFN, KIT, China, UK collaboration

ATLASPIX3 - Quad modules

- Multi-chip module assembly
 - aggregates electrical services and connection for multiple sensors
 - quad module, inspired by ITk pixels
 - implemented interface to readout system
 - developed software for module calibration

Congresso SIF-14/09/2022

ATLASPIX3 - Threshold and Noise

- Thresholds and noise measurements
 - S-Curve method
 - o parameters extrapolated from fit with Gaussian error function
- Thresholds tuning
 - enhance **uniformity** across matrix
 - tuning circuit **TDAC**

Congresso SIF-14/09/2022

ATLASPIX3 - Operation test

- Amptek Mini-X2 with silver anode, max energy 50 kV
 - Rate range: ~1.5 x 10^4 hits/s to ~ 3.4 x 10^4 hits/s
 - Components on the PCB can be easily identified
- Two modules used for the testbeam 4-10 april at DESY
 - Module's operativity demonstrated

Congresso SIF-14/09/2022

ATLASPIX3 - Serial powering

- Version ATLASPIX3.1 has possibility for serial powering through two shunt/low dropout regulators
- Possibility to use a single power supply for all the 6 alimentation needed to operate the chips
- Turn-on curves (input and output) for digital and analog regulators
- Different external resistive loads
- Linear part after the power on fitted with V_{off}+I*R_{eff}
- Ideal $R_{eff} \sim 0 \Omega$, $V_{off} \sim 2 V$ for input, $\sim 1.8 V$ for output

Congresso SIF-14/09/2022

- **DMAPS** are **cost effective and performant solution** for the tracking system of next generation e+ecolliders
- ATLASPIX3 is a full size detector providing most of the features needed by e+e- experiments
- Deployment on a real detector system requires the aggregration of data and services, for this purpose multi-chip modules have been realized and successfully tested
- Further integration requires to be able to chain multiple modules using the same serial-powering concept developed for the silicon trackers for HL-LHC
- Early tests on the shunt regulators implemented on the ATLASPIX3.1 chips are encouraging and make possible to proceed to a redesign of a module concept based on serial powering and the building of multi-module chains suitable for CepC and FCCee accelerators

Thanks for your attention!

Congresso SIF-14/09/2022

BACKUP

Congresso SIF-14/09/2022

ATLASPIX3 - Radioactive sources

Congresso SIF-14/09/2022

ATLASPIX3 - System considerations

- Complete system consists of 900'000 cm² area / 4 cm² chip = 225k chips (56k quad-modules)
 - o aggregation of several modules for data and services distribution is essential
 - inner tracker will be 5--10% of this
- Data rate constrained by the inner tracker
 - average rate $10^{-4} 10^{-3}$ particles cm⁻² event⁻¹ at Z peak
 - assuming 2 hits/particle, 96 bits/hit for ATLASPIX3
 - 640 Mbps link/quad-module (assuming local module aggregation) provides ample operational margin
 - 16 modules can be arranged into 10 Gbps fast links: 3.5k links
 - can also assume 100 Gbps links will be available: 350 links
- DAQ architecture
 - **triggerless readout** will fit the data transmission budget but requires off-chip re-ordering of data
 - triggered readout will be simpler and would also reduce the bandwidth occupancy
- Power consumption
 - ATLASPIX3 power consumption 150 mW/cm²
 - 600 mW/chip \rightarrow 2.4 W/module \rightarrow total FE power 130 kW
 - additional power for on detector aggregation and de-randomizations ~2W/link

Congresso SIF-14/09/2022

ATLASPIX3 - Power consumption

- Full chip turn-on \sim 300 mA
- Input voltage ~2.3 V
- Power consumption ~690 mW/chip/ ~175 mW/cm²

Congresso SIF-14/09/2022