The SAND detector at the DUNE near site

Francesco Poppi for the DUNE Collaboration

108° Congresso Nazionale SIF, Milan

September 16, 2022

DUNE: Deep Underground Neutrino Experiment

- Rich research program:
 - **neutrino oscillations** (leptonic CP violation, Neutrino Mass ordering, PMNS matrix measurements)
 - Supernova neutrino physics
 - **BSM physics** (baryon number violation and others)
- New neutrino ($\nu/\overline{\nu}$) beam: wide band, peak at 2.5 GeV and high power proton beam (1.2 MW upgradable to 2.4 MW)
- Near and Far Detector:
 - **Far Detector (FD):** four Liquid Argon Time Projection Chambers (LArTPC) of 17kton, located 1.5 km underground and 1300 km away from the neutrino source
 - the Near Detector complex (ND)

The Near Detector complex

Near detector will be located 575 m from the neutrino source

Three main detectors:

- ND-LAr: a 67 t modular LArTPC
- **TMS / ND-GAr**: Temporary Muon Spectrometer (Phase 1) / high pressure gaseous argon TPC, surrounded by an electromagnetic calorimeter in a 0.5 T magnetic field (Phase 2)
- SAND (System for on Axis Neutrino Detection): a magnetized multi-purpose detector

SAND

SAND goals:

- beam monitoring
- flux measurements
- constrain nuclear effects systematics

The SAND detector:

- superconducting magnet
- Electromagnetic Calorimeter (ECAL)
- Straw-Tube-Tracker (STT) complemented with CH₂ and C targets
- 1-ton LAr active target (GRAIN)

Repurposed from the KLOE experiment at Frascati National Laboratories

SAND – magnet and ECAL

• ECAL:

- fine sampling calorimeter made of lead-scintillating fibres
- readout on both ends by 4800 PMTs
- **barrel ECAL** composed of 24 trapezoidal sectors, 4.3 m long
- end-caps ECAL composed of 26 «C» shaped vertical modules
- Magnet:
 - superconducting coil
 - 5m bore
 - magnetic field of 0.6 T
 - 475 tons iron yoke

SAND - GRAIN

- 1-ton LAr target: GRAIN (GRanular Argon for Interactions of Neutrinos)
- cryostat made of C-composite materials and Aluminum, overall radiaton length to $\sim 1 X_0$ (cryostat+LAr)
- GRAIN will be used as:
 - **passive target:** to study v Ar interactions, in synergy with STT and ECAL
 - active target: to perform imaging on prompt VUV scintillation light (readout by arrays of Silicon Photo-Multipliers)

See M. Vicenzi's talk on neutrino event reconstruction in GRAIN

SAND - STT

- Diffuse target tracker system:
 - 90 modules with an overall fiducial mass of \sim 5 t.
 - Each module is composed of 4 planes of straw tubes (5 mm diameter) in XXYY disposition, a tunable passive target (*CH*₂, *C*, ...) and a radiator of polypropylene foils
- The STT design grants:
 - reconstruction of transverse plane kinematics variables
 - e/π separation (transition radiation) and $p/\pi/K$ identification (dE/dX and range)
 - 4π detection of π^0 from γ conversion within the STT volume
 - **neutron detection**, in synergy with ECAL proven capabilities

SAND – beam monitoring

- **Continuous monitoring** of the neutrino beam is necessary to identify potential variations that could directly affect the FD oscillation analysis
- monitoring performed by reconstructing the neutrino interaction (energy spectra and spatial distribution)

 SAND will have enough sensitivity to detect most of the beam variations with 1 week of data taking

Proton beam parameter	1σ deviation	New	
	as given by	$\sqrt{\Delta\chi^2}(E_{\nu})$	
	beam group	true	rec
Horn current	+3 kA	12.57	9.44
Water layer thickness	+0.5 mm	4.69	3.58
Proton target density	+2%	5.28	4.07
Beam sigma	+0.1 mm	4.41	3.53
Beam off set X	+0.45 mm	5.11	3.54
Beam theta phi	0.07 mrad $ heta$, 1.57 ϕ	0.62	0.28
Beam theta	0.070 mrad	0.91	0.58
horn 1 X shift	+0.5 mm	4.70	3.42
horn 1 Y shift	+0.5 mm	5.27	3.87
horn 2 X shift	+0.5 mm	1.18	0.69
horn 2 Y shift	+0.5 mm	1.31	0.77

1 week of data taking

SAND – flux measurements

• neutrino flux measurements $\phi(E_{\nu})$ is a mandatory condition to **extract oscillation probability** from measured neutrino interactions:

$$N_X = \int P_{osc}(E_{\nu}) * \phi(E_{\nu}) * \sigma_X(E_{\nu}) * R_{phys}(E_{\nu}, E_{vis}) * R_{det}(E_{vis}, E_{rec}) dE_{\nu}$$

• absolute and relative vfluxes evaluated by a large sample of v/\overline{v} interactions on *H* within the STT

Systematic uncertainties on flux measurement (5 years data-taking, STT-only)

SAND – constrain nuclear effects

 complex modelling of neutrino interaction in argon can be improved by direct comparison of neutrino interactions with hydrogen

$$N_{X} = \int P_{osc}(E_{\nu}) * \phi(E_{\nu}) * \sigma_{X}(E_{\nu}) * R_{phys}(E_{\nu}, E_{vis}) * R_{det}(E_{vis}, E_{rec}) dE_{\nu}$$

known Measured to 1% with large on H statistic $R_{phys} \equiv 1$ $\delta p/p \ 0.2\%$ calibrated from $K_{0} \rightarrow \pi^{+} \pi^{-}$ in STT volume

• SAND allows to constrain the product $\sigma_X(E_v) * R_{phys}(E_v, E_{vis})$ on Ar by a direct comparison with *H* within the same detector

SAND – background rejection

- cosmic radiation and ambient radioactivity backgrounds can be suppressed by requiring in-time coincidence with beam spill
- the most critical background: beam related interactions in the material surrounding the detector
- the expected CC+NC event rate per spill is 84 (45) events/spill for neutrinos (anti-neutrinos)

The external background can be rejected by means of simple cuts to timing and topological information from the subdetectors Simulation of v interaction in a spill

Signal efficiency (%)	Background efficiency (%)	Purity (%)
92.8	0.003	99.6

Conclusions

- DUNE is a new generation long baseline neutrino experiment that will exploit a Near and Far Detector structure
- the SAND detector is a key element of the DUNE experiment. It is expected to start data taking operation since Day 1 of the DUNE program, foreseen for 2030
- the excellent beam monitoring capabilities will significantly contribute to the long-baseline oscillation measurements
- SAND also offers the possibility to further constrain flux and nuclear effects systematics

