
108° Congresso Nazionale SIF Università di Milano, Italy

Proteins - a celebration of consilience

physics meets biology

Tatjana Škrbić

Jayanth Banavar, Amos Maritan, Achille Giacometti, Trinh Hoang, George Rose

AlphaFold: Breakthrough of the Year 2021

Science

Article
 Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2	John Jumper ${ }^{14 \boxtimes}$, Richard Evans ${ }^{14}$, Alexander Pritzel ${ }^{[1,4}$, Tim Green ${ }^{14}$, Michael Figurnov ${ }^{1,4}$, Olaf Ronneberger ${ }^{1,4}$, Kathryn Tunyasuvunakool ${ }^{1,4,}$, Russ Bates ${ }^{14}$, Augustin Židek ${ }^{1,4}$, Anna Potapenko ${ }^{1,4}$, Alex Bridgland ${ }^{1,4}$, Clemens Meyer ${ }^{14}$, Simon A. A. Kohl ${ }^{1,4,}$, Andrew J. Ballard ${ }^{14,}$, Andrew Cowie ${ }^{1,4}$, Bernardino Romera-Paredes ${ }^{1,4}$, Stanislav Nikolov ${ }^{1,4}$, Rishub Jain ${ }^{1 / 4}$, Jonas Adler ${ }^{1}$, Trevor Back ${ }^{1}$, Stig Petersen ${ }^{1}$, David Reiman ${ }^{1}$, Ellen Clancy ${ }^{1}$, Michal Zielinski', Martin Steinegger ${ }^{233}$, Michalina Pacholska', Tamas Berghammer ${ }^{1}$, Sebastian Bodenstein ${ }^{1}$, David Silver ${ }^{1}$, Oriol Vinyals ${ }^{1}$, Andrew W. Senior ${ }^{1}$, Koray Kavukcuoglu ${ }^{1}$, Pushmeet Kohli' \& Demis Hassabis ${ }^{1,4}$		
Received: 11 May 2021			
Accepted: 12 July 2021			
Published online: 15 July 2021			
Open access			

Is protein folding problem solved?

AlphaFold：Breakthrough of the Year 2021

Science

Article
 Highly accurate protein structure prediction with AlphaFold

https：／／doi．org／10．1038／s41586－021－03819－2	John Jumper ${ }^{14 \square}$ ，Richard Evans ${ }^{14}$ ，Alexander Pritzel ${ }^{1 / 4}$ ，Tim Green ${ }^{14}$ ，Michael Figurnov ${ }^{1,4,4}$ ，
Received：11 May 2021	Olaf Ronneberger ${ }^{1,4}$ ，Kathryn Tunyasuvunakool ${ }^{1,4}$ ，Russ Bates ${ }^{14}$ ，A Anna Potapenko ${ }^{1,4}$ ，Alex Bridgland ${ }^{14}$ ，Clemens Meyer ${ }^{14}$ ，Simon A．A
Accepted： 12 July 2021	Andrew J．Ballard ${ }^{14,}$ ，Andrew Cowie ${ }^{1,4}$ ，Bernardino Romera－Paredes ${ }^{1,4}$ ，Stanislav Nikolov ${ }^{1,4}$ ，
Published online： 15 July 2021	Rishub Jain ${ }^{1 / 4}$ ，Jonas Adler ${ }^{1}$ ，Trevor Back ${ }^{1}$ ，Stig Petersen ${ }^{1}$ ，David Reiman¹，Ellen Clancy ${ }^{1}$ ，
Open access	Sebastian Bodenstein＇，David Silver ${ }^{1}$ ，Oriol Vinyals ${ }^{1}$ ，Andrew W．Senior ${ }^{1}$ ，Koray Kavukcuoglu ${ }^{1}$ ，
（⿴囗十）Check for updates	Pushmeet Kohti＇\＆Demis Hassab

Is protein folding problem solved？

The protein－folding problem：Not yet solved

We agree with H．H．Thorp（＂Proteins，pro－ teins everywhere，＂Editorial， 17 December 2021，p．1415）and numerous others（ 1 ）that the advance in protein structure predic－ tion achieved by the computer programs AlphaFold（2）and RoseTTAfold（3）is worthy of special notice．The accuracies of the predictions afforded by these new approaches，which use machine－learning methods that exploit the information about the relationship between sequence and structure contained in the databases of experimental protein structures and sequences，are much superior to previous approaches．However，we do not agree with Thorp that the protein－folding problem has been solved．

Not yet，so let＇s keep doing it！

Peter B．Moore ${ }^{1}$ ，Wayne A．Hendrickson ${ }^{2}$ ， Richard Henderson ${ }^{3}$ ，Axel T．Brunger ${ }^{4 *}$ ${ }^{1}$ Department of Chemistry，Yale University． New Haven，CT 06520，USA．${ }^{2}$ Department of Biochemistry and Molecular Biophysics． Columbia University．New York，NY 10032. USA．${ }^{3}$ MRC Laboratory of Molecular Biology． Cambridge CB2 OQH．UK．${ }^{4}$ Department of Molecular and Cellular Physiology．Howard Hughes Medical Institute，Stanford University． Stanford，CA 94305，USA．

4 FEBRUARY 2022 • VOL 375 ISSUE 6580

A brief introduction to proteins

- Linear chains (of amino acids) with bond length $\sim 3.8 \AA$
- 20 amino acid types with distinct side chains
- Proteins fold rapidly and reproducibly (Anfinsen)
- Textbook paradigm: sequence determines structure
- Folding driven by hydrophobicity \rightarrow protein maximizes self-interaction \& expels water from its interior
- Space-filling building blocks: α - helices and almost planar β - sheets
- Modular structure, finite number of folds

Linus Pauling

- Geometries of protein building blocks predicted from quantum chemistry: planarity of the peptide bond \& need for a coherent placement of hydrogen bonds

THE STRUCTURE OF PROTEINS: TWO HYDROGEN-BONDED HELICAL CONFIGURATIONS OF THE POLYPEPTIDE CHAIN

By Linus Pauling, Robert B. Corey, and H. R. Branson*
Gates and Crellin Laboratories of Chemistry,
California Institute of Technology, Pasadena, California \dagger
Communicated February 28, 1951

CONFIGURATIONS OF POLYPEPTIDE CHAINS WITH FA VORED ORIENTATIONS AROUND SINGLE BONDS: TWO NEW PLEATED SHEETS
By Linus Pauling and Robert B. Corey
Gates and Crbllin Laboratoribs of Chbmistry,* California Institute of Technology, Pasadena, California

Communicated September 4, 1951

A diagrammatic representation of the parallel-chain pleated sheet structure.

FIGURE 4

A diagrammatic representation of the antiparallel-chain pleated sheet structure.

Polymers vs. Proteins

What is missing?

Amino acid heterogeneity? Chemistry?

Or does one need to remove spurious symmetries?

Breaking spherical symmetry

- Chain is uniaxial This inconsistency can be
e Sphere is isotropic \int removed by overlap

+ effective attraction mimicking hydrophobic collapse $+\underline{\text { side spheres }}$ in anti-normal direction (steric hindrance)

Elixir phase

Škrbić, Hoang, Maritan, Banavar \& Giacometti, Proteins (2019) Škrbić, Hoang, Maritan, Banavar \& Giacometti, Soft Matter (2019)

- When inspected carefully, helices \& sheets do not have the right geometries
e Breaking spherical symmetry helps

But what is missing?

Space-filling is not correctly captured!

$$
\dot{\stackrel{2}{2}}
$$

Continuum case
a)

b)

Maritan, Micheletti,
Trovato \& Banavar, Nature (2000)

The discrete

 space-filling helix- Bond length equal to $3.81 \AA$
- Space-filling discrete helix determined from elementary mathematics \& physics

Tube radius $\underline{\Delta} \approx 2.63 \AA$

Rotation angle $\varepsilon \approx 99.8^{\circ}$

Pitch to radius ratio

$$
\eta=P /(2 \pi R) \approx 0.400
$$

$$
\varepsilon \sim 99.8^{\circ}
$$

Discreteness: β-strands

$$
r(t)=R(\sin t, \cos t, \eta t)
$$

ε is rotation angle
$\mathrm{t}=\mathrm{n} \varepsilon, \mathrm{n}=1,2,3, \ldots$
$\mathbf{R}=$ helix radius
$\mathrm{P}=$ helix pitch
$\eta=P /(2 \pi R)$

- Three distinct geometries
- Discreteness enables a second building block

Two types of assembly of β-strands

Tube radius of $2.63 \AA ̊$

Experimental data on more than 4000 protein structures from PDB are in accord with zero-parameter theory

HELIX	Theory	PDB data
Rotation angle $\varepsilon\left[^{\circ}\right]$	$\underline{99.8}$	99.1 ± 3.4
\# of residues per turn	$\underline{3.61}$	3.63 ± 0.13
Helix radius R $[\AA]$	$\underline{2.27}$	2.30 ± 0.07
Helix pitch P $[\AA]$	$\underline{5.69}$	5.47 ± 0.49
Ratio $\eta=\mathrm{P} /(2 \pi \mathrm{R})$	$\underline{0.400}$	0.377 ± 0.046
$\angle(i, i+3, i+4)\left[^{\circ}\right]$	$\underline{90.0}$	86.5 ± 3.9
$\boldsymbol{d}(\boldsymbol{i}, \boldsymbol{i}+3)[\AA]$	$\underline{\mathbf{2 \Delta}}=5.26$	5.12 ± 0.16
$\boldsymbol{\theta}\left[^{\circ}\right]$	$\underline{91.8}$	91.3 ± 2.2
$\boldsymbol{\mu}\left[^{\circ}\right]$	$\underline{\underline{52.4}}$	49.7 ± 3.9

Škrbić, Maritan, Giacometti, Rose \& Banavar, Phys. Rev. E (2021)
Škrbić, Hoang, Giacometti, Maritan \& Banavar, Int. J. Mod. Phys. B (2022)

Experimental data on more than 4000 protein structures from PDB are in accord with zero-parameter theory

$\beta \uparrow \uparrow$

SHEET	Theory	PDB data	
Parallel β-sheet			
$\boldsymbol{\theta}\left[\left[^{\circ}\right]\right.$	$\underline{\text { flexible }}$	121 ± 10	
$\boldsymbol{\mu}\left[^{\circ}\right]$	$\underline{\sim 180}$	191 ± 17	
$\boldsymbol{d}\left(\boldsymbol{i}+1, M_{j+1}\right)[\AA]$	$\underline{2 \Delta=5.26}$	5.26 ± 0.16	
$\angle\left(\boldsymbol{i}-1, M_{j-1}, M_{j+1}\right)\left[^{\circ}\right]$	$\underline{90.0}$	87.2 ± 4.5	
$\angle\left(M_{j-1}, i-1, i+1\right)\left[{ }^{\circ}\right]$	$\underline{90.0}$	87.6 ± 3.6	

Škrbić, Maritan, Giacometti, Rose \& Banavar, Phys. Rev. E (2021)
Škrbić, Hoang, Giacometti, Maritan \& Banavar, Int. J. Mod. Phys. B (2022)

Experimental data on more than 4000 protein structures from PDB are in accord with zero-parameter theory

$\beta \uparrow \downarrow$

SHEET	Theory	
PDB data		
	Antiparallel β-sheet	
$\boldsymbol{\theta}\left[^{\circ}\right]$	$\underline{\text { flexible }}$	127 ± 10
$\boldsymbol{\mu}\left[^{\circ}\right]$	$\underline{\sim 180}$	186 ± 20
$\boldsymbol{d}(\boldsymbol{i}, \boldsymbol{j})[\AA]$	$\underline{2 \Delta=5.26}$	5.26 ± 0.20
$\angle(i-1, j+1, j+3)\left[^{\circ}\right] \underline{90.0}$	87.0 ± 4.2	
$\angle(j+1, i-1, i+1)\left[^{\circ}\right] \underline{90.0}$	86.4 ± 4.1	

Textbook paradigm: Sequence determines structure

\square

Sequence selects structure

from the menu of pre-determined folds: Sequence independent free energy landscape

- Banavar, Maritan et al. (2000 onwards)

Finite \# of distinct folds
($\sim 10,000$ structures in PDB)
Homopolymer:
all minima are equivalent
vs.

Astronomical \# of putative sequences ($\sim 100{ }^{20}$)

Specific sequence: one minimum is selected

Summary

* First principles, zero parameter predictions of protein building blocks geometries validated by experimental structures
* Discreteness is essential for life
* Possibility of new classes of protein-like nano-machines not necessarily based on carbon chemistry
* While sequences and functionalities undergo Darwinian evolution, protein structures are Platonic and immutable - this helps maintain functionality during evolution
* Future investigation: understanding the role of amino acid specificity in dictating the choice of the native state fold
* Consilience: Chemistry \& Biology provide a perfect fit to the dictates of Mathematics \& Physics

