

108° Congresso Nazionale SIF Università di Milano, Italy

Proteins – a celebration of consilience

physics meets biology

Tatjana Škrbić

Jayanth Banavar, Amos Maritan, Achille Giacometti, Trinh Hoang, George Rose

AlphaFold: Breakthrough of the Year 2021

Science

Article Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-	2
Received: 11 May 2021	
Accepted: 12 July 2021	_
Published online: 15 July 2021	
Open access	
Check for updates	

John Jumper¹⁴, Richard Evans¹⁴, Alexander Pritzel^{1,4}, Tim Green¹⁴, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Žídek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard¹⁴, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger²³, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis^{1,4}

Is protein folding problem solved?

AlphaFold: Breakthrough of the Year 2021

Science

Article Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2
Received: 11 May 2021
Accepted: 12 July 2021
Published online: 15 July 2021
Open access

John Jumper^{14©}, Richard Evans¹⁴, Alexander Pritzel^{1,4}, Tim Green¹⁴, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuv unakool^{1,4}, Russ Bates¹⁴, Augustin Židek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer¹⁴, Simon A. A. Kohl^{1,4}, Andrew J. Ballard¹⁴, Andrew Cowia^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain¹⁴, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,2}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli^{1,4} & Demis Hassabis^{1,4}

Check for updates

Is protein folding problem solved?

The protein-folding problem: Not yet solved

We agree with H. H. Thorp ("Proteins, proteins everywhere," Editorial, 17 December 2021, p. 1415) and numerous others (1) that the advance in protein structure prediction achieved by the computer programs AlphaFold (2) and RoseTTAfold (3) is worthy of special notice. The accuracies of the predictions afforded by these new approaches, which use machine-learning methods that exploit the information about the relationship between sequence and structure contained in the databases of experimental protein structures and sequences, are much superior to previous approaches. However, we do not agree with Thorp that the protein-folding problem has been solved.

Not yet, so let's keep doing it!

Peter B. Moore¹, Wayne A. Hendrickson², Richard Henderson³, Axel T. Brunger^{4*}

¹Department of Chemistry, Yale University, New Haven, CT 06520, USA. ²Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ³MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ⁴Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

4 FEBRUARY 2022 • VOL 375 ISSUE 6580

A brief introduction to proteins

- Linear chains (of amino acids) with bond length ~3.8Å
- 20 amino acid types with distinct side chains
- Proteins fold rapidly and reproducibly (Anfinsen)
- Textbook paradigm: sequence determines structure
- Folding driven by hydrophobicity → protein maximizes self-interaction & expels water from its interior
- Space-filling building blocks: α helices and almost planar β sheets
- Modular structure, finite number of folds

Linus Pauling

Geometries of protein building blocks predicted from quantum chemistry: planarity of the peptide bond & need for a coherent placement of hydrogen bonds

THE STRUCTURE OF PROTEINS: TWO HYDROGEN-BONDED HELICAL CONFIGURATIONS OF THE POLYPEPTIDE CHAIN

BY LINUS PAULING, ROBERT B. COREY, AND H. R. BRANSON*

GATES AND CRELLIN LABORATORIES OF CHEMISTRY, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA[†]

Communicated February 28, 1951

CONFIGURATIONS OF POLYPEPTIDE CHAINS WITH FAVORED ORIENTATIONS AROUND SINGLE BONDS: TWO NEW PLEATED SHEETS

BY LINUS PAULING AND ROBERT B. COREY

GATES AND CRELLIN LABORATORIES OF CHEMISTRY,* CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA

Communicated September 4, 1951

β∮↓

Polymers vs. Proteins

What is missing?

Amino acid heterogeneity? Chemistry?

Or does one need to remove spurious symmetries?

Breaking spherical symmetry

+ <u>effective attraction</u> mimicking hydrophobic collapse
+ <u>side spheres</u> in anti-normal direction (steric hindrance)

Elixir phase

Škrbić, Hoang, Maritan, Banavar & Giacometti, *Proteins* (2019) Škrbić, Hoang, Maritan, Banavar & Giacometti, *Soft Matter* (2019)

- When inspected carefully, helices & sheets do not have the right geometries
- Breaking spherical symmetry helps

But what is missing?

Space-filling is not correctly captured!

Sphere vs Tube

Continuum case

2Δ

Ρ

b)

The discrete space-filling helix

- Bond length equal to 3.81Å
- Space-filling discrete helix determined from elementary mathematics & physics

Tube radius $\Delta \approx 2.63 \text{\AA}$

Rotation angle $\underline{\epsilon} \approx 99.8^{\circ}$

Pitch to radius ratio $\underline{\eta} = P/(2 \pi R) \approx 0.400$

+4i+3 i+2 i-1

Maritan, Micheletti, Trovato & Banavar, *Nature* (2000)

Discreteness: β-strands

r(t) = R(sint, cost, η t) ε is rotation angle t = n ε , n = 1, 2, 3, ... R = helix radius P = helix pitch η = P/(2 π R)

- Three distinct geometries
- Discreteness enables a second building block

Two types of assembly of β-strands

Tube radius of 2.63Å

Experimental data on more than 4000 protein structures from PDB are in accord with zero-parameter theory

HELIX	Theory	PDB data
Rotation angle ε [°]	<u>99.8</u>	99.1 ± 3.4
# of residues per turn	<u>3.61</u>	3.63 ± 0.13
Helix radius R [Å]	<u>2.27</u>	2.30 ± 0.07
Helix pitch P [Å]	<u>5.69</u>	5.47 ± 0.49
Ratio $\eta = P/(2\pi R)$	<u>0.400</u>	0.377 ± 0.046
$\angle(i,i+3,i+4)~[^\circ]$	<u>90.0</u>	86.5 ± 3.9
$d(i,i+3) \; [{ m \AA}]$	$\underline{2\Delta=5.26}$	5.12 ± 0.16
$oldsymbol{ heta}$ [°]	<u>91.8</u>	91.3 ± 2.2
$oldsymbol{\mu}$ [°]	52.4	49.7 ± 3.9

Škrbić, Maritan, Giacometti, Rose & Banavar, *Phys. Rev. E* (2021) Škrbić, Hoang, Giacometti, Maritan & Banavar, *Int. J. Mod. Phys. B* (2022)

Experimental data on more than 4000 protein structures from PDB are in accord with zero-parameter theory

Škrbić, Maritan, Giacometti, Rose & Banavar, *Phys. Rev. E* (2021) Škrbić, Hoang, Giacometti, Maritan & Banavar, *Int. J. Mod. Phys. B* (2022)

Experimental data on more than 4000 protein structures from PDB are in accord with zero-parameter theory

Škrbić, Maritan, Giacometti, Rose & Banavar, *Phys. Rev. E* (2021) Škrbić, Hoang, Giacometti, Maritan & Banavar, *Int. J. Mod. Phys. B* (2022) Textbook paradigm: Sequence determines structure

Sequence selects structure

from the menu of pre-determined folds: Sequence independent free energy landscape

– Banavar, Maritan et al. (2000 onwards)

Finite # of distinct folds (~10,000 structures in PDB) vs.

Astronomical # of putative sequences (~100²⁰)

Homopolymer : all minima are equivalent

Specific sequence: *one minimum is selected*

Summary

* First principles, zero parameter predictions of protein building blocks geometries validated by experimental structures

- * Discreteness is essential for life
- * Possibility of new classes of protein-like nano-machines not necessarily based on carbon chemistry
- * While sequences and functionalities undergo *Darwinian evolution*, protein structures are *Platonic and immutable* this helps maintain functionality during evolution
- * Future investigation: understanding the role of amino acid specificity in dictating the choice of the native state fold
- * Consilience: Chemistry & Biology provide a perfect fit to the dictates of Mathematics & Physics