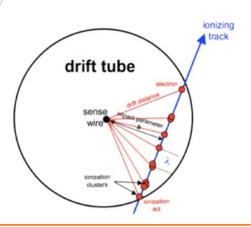
Particle identification with the cluster counting technique in the IDEA drift chamber

Matteo Greco for the cluster counting team

108° Congresso Nazionale della Società Italiana di Fisica

12-16 September 2022, Milano

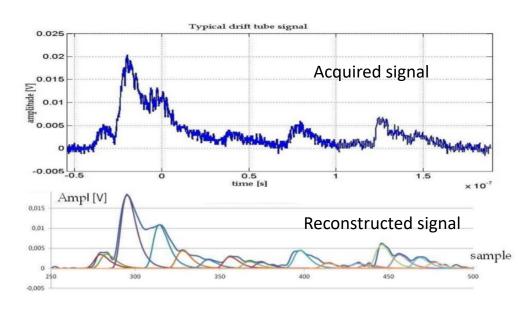

Outline

- The cluster counting technique: a promising method for the particle identification
- The simulation results with Garfield++ and Geant4
- A test beam for the validation of the expectations
- Preliminary results: the algorithms to count clusters

The cluster counting technique

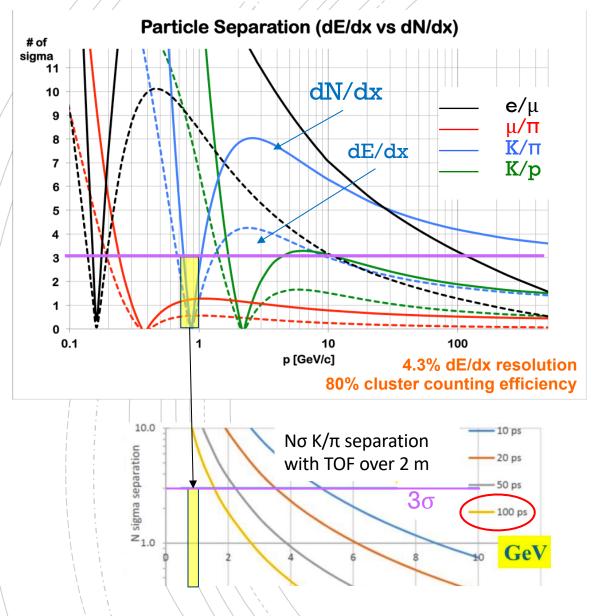
- **Particle identification** can be performed using the information of the energy deposit by a track in gas detector → the uncertainties in the total energy deposition represent a limit to the particle separation
- •/ Cluster counting technique can improve the particle separation capabilities!!!
- / The method consists/in/singling out, in ever recorded detector signal, the isolated structures related to the arrival on the anode wire of the

electrons belonging to a single ionization act (dN_{cl}/dx)

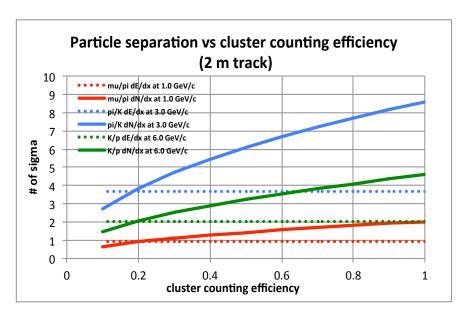


Truncated mean cut (70-80%) reduces the amount of collected information $n \approx 100$ and a 2m track at 1 atm give $\sigma \approx 4.3\%$

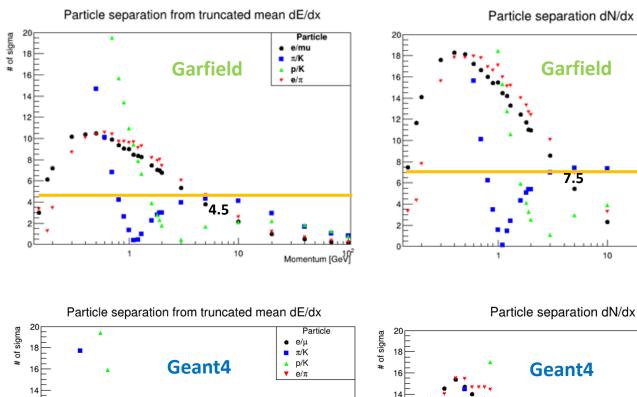
 dN_{cl}/dx

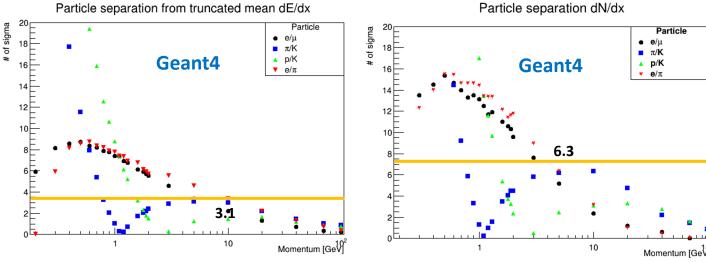

 δ_{cl} = 12.5/cm for He/iC₄H₁₀= 90/10 and a 2m track give

 $\sigma \approx 2.0\%$


This technique will be used for the **IDEA drift chamber** for FCC-ee and CEPC

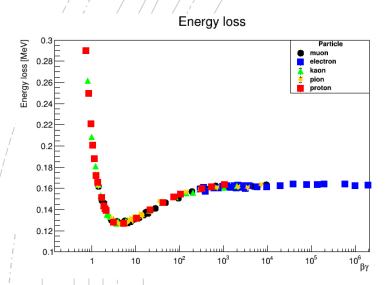
The cluster counting technique: expected performance

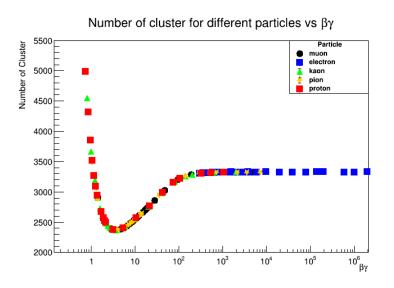

Matteo Greco


- 80% cluster counting efficiency
- Expected excellent K/π separation over the entire range except 0.85<p<1.05 GeV (blue lines)
- Could recover with timing layer

Analytic evaluation, prof F.Grancagnolo
To be checked with simulations and experimental
data

- A simulation of the ionization process in 1 cm long side cell of 90% He and 10% iC₄H₁₀ has been performed in Garfield++/and Geant4
- Geant4 software can simulate in detail a full-scale detector/
- Three different algorithms have been implemented to simulate in Geant4 the number of clusters and cluster size distributions, using the energy deposit provided by Geant4
- The simulations confirm the predictions: a factor 2 better than dE/dx!

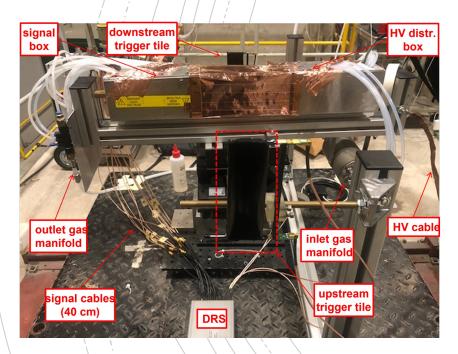


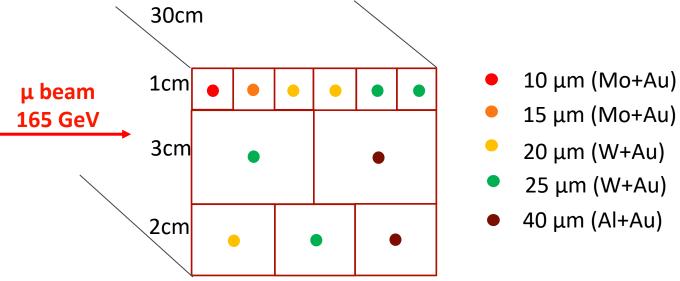


We are assuming a cluster counting efficiency of 100%.

Motivations for a test beam

- Lack of experimental data on cluster density and cluster population for He based gas, particularly in the relativistic rise region
- Why is particle separation, both with dE/dx and with dN/dx, in Geant4 considerably worse than in Garfield?
- Despite a higher value of the dN/dx/Fermi plateau with respect to dE/dx, why is this reached at lower values of βγ with a steeper slope?

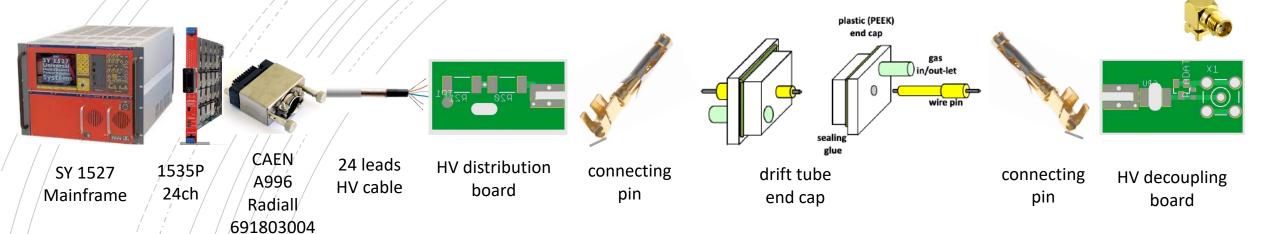



The only way to solve these issues is an experimental measurement! So we planned a test beam in 2 part:

- 1) November 2021: demonstrate the ability to count clusters at different gas mixtures and with different drift cell size, different wire material and different wire diameter (muon beam of 165 GeV/c at CERN/H8)
- 2) July 2022: measure the number of cluster distribution at different muon momenta (beam of 40, 80, 180 GeV/c at CERN/H8) at different gas mixture, different drift cell size, different wire material and different wire diameter

Experimental setup

- The first part of the test has been done during November 2021 at CERN/H8
 - Keep it simple!
 - 11 drift tubes with different cell size and different material wires and diameter wires, to test different configurations

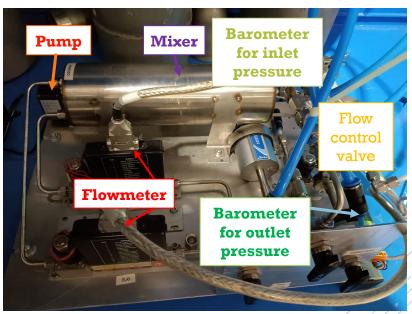


The set up consists of:

- 6 drift tubes 1 cm × 1 cm × 30 cm
 - \circ 1 with 10 μ m sense wire, 1 with 15, 2 with 20 μ m, 2 with 25 μ m
- 3 drift tubes 2 cm × 2 cm × 30 cm
 - 1 with 20 μm sense wire, 1 with 25 μm, 1 with 40 μm
- 2 drift tubes 3 cm × 3 cm × 30 cm
 - \circ 1 with 20 μ m sense wire, 1 with 40 μ m
- DRS for data acquisition
- Gas mixing, control and distribution (only He and iC_4H_{10})
- 2 trigger scintillators

The connection scheme

Trigger scintillator

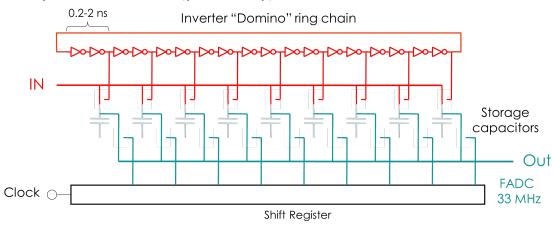


Two **scintillator** tiles (12 cm x 4 cm), placed upstream and downstream of the drift tubes pack, instrumented with SiPM

The gas system:

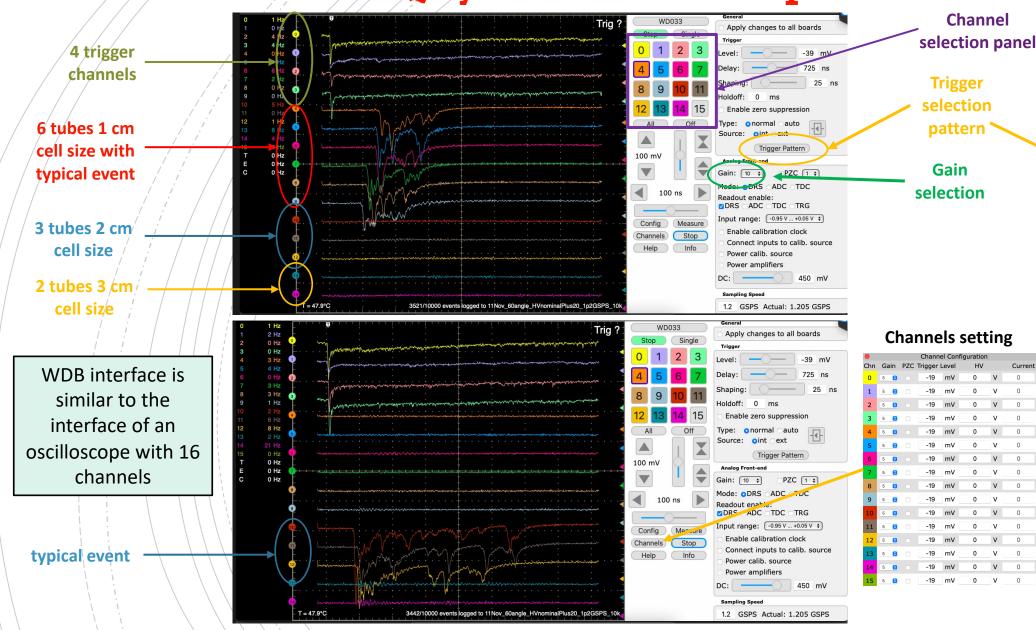
- sets the needed gas mixture
- checks the gas pressure at the entrance
 and at the exit of the tubes
- maintains constant the gas pressure
 inside the tubes, by using a proportional
 valve and a pump

Portable gas system


Matteo Greco

The DAQ system: wave dream board (WDB)

- 16 ch Drs4 REAdout Module
- 16 channels data acquisition board designed and used by the MEG2 experiment at PSI ($\mu \rightarrow e + \gamma$)



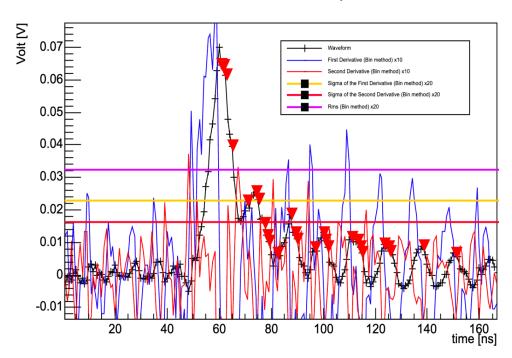
MORE INFORMATION:

Application of the DRS chip for fast waveform digitizing, Stefan Ritt, Roberto Dinapoli, Ueli Hartmann, Nuclear Instruments and Methods in Physics Research A 623 (2010) 486–488

- The bin data files have been converted in root format to accomplish the data analysis.
- Data at different configuration have been collected:
 - √ 90%He-10%iC₄H₁₀
 - ✓ 80%He-20%iC₄H₁₀
 - ✓ HV nominal (+10,+20,+30,-10,-20,-30)
 - ✓ Angle 0°, 30°, 45°, 60°

The DAQ system: an oscilloscope interface

Matteo Greco

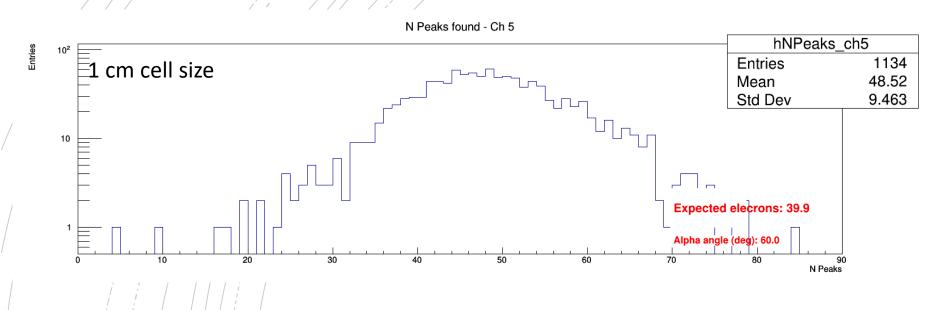

Preliminary results: an efficient algorithm to count electrons

The first and second derivative algorithm (DERIV)

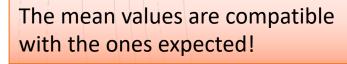
Requirements for a good peak candidate in the bin position [ip]:

- 1. / Amplitude constraint;
 - Amplitude[ip]>4*rms
 - Amplitude[ip]- Amplitude[ip-1]>rms | | Amplitude[ip+1]-Amplitude[ip-1]>rms
- 2. First derivative constraint:
 - Fderiv[ip]< $\sigma_{der1}/2$
 - Fderiv[ip-1]> σ_{der1} | | Fderiv[ip+1]<- σ_{der1}
- 3. Second derivative constraint:
 - | Sderiv[ip]<0

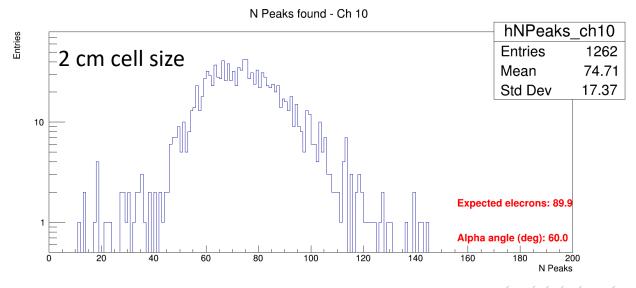
0°, nominal HV+20, 90%He-10%iC $_4$ H $_{10}$ Tube with 1 cm cell size and 20 μ m diameter



Expected number of electrons peaks:

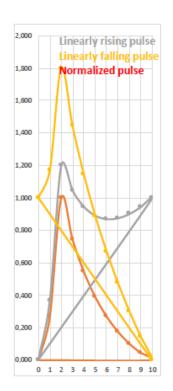

 $N_{peak} = \delta_{cluster/cm}$ (MIP) * (drift tube size [cm]) * 1.3 (relativistic rise) * 1.6 (electron/cluster) * $\frac{1}{\cos(\alpha)}$

- $\delta_{cluster/cm}$ (MIP) changes from 12 to 18 respectively for 90%He and 80%iC₄H₁₀
- Drift tube size changes from 0.8 to 1.8 respectively for 1 cm and 2 cm cell size tube
- α is the angle of the muon tracks to the detector


The first and second derivative algorithm: results

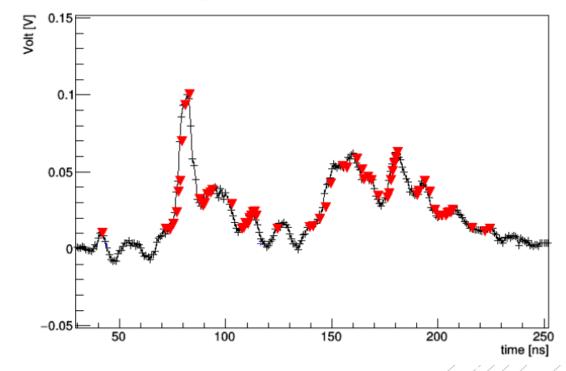
90%He-10%iC₄H₁₀ 60° nominal HV+20

Matteo Greco

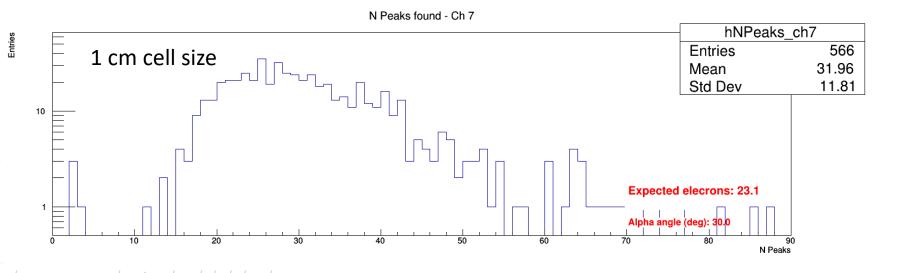

The running template algorithm (RTA)

- 1. Define an electron pulse template based on experimental data
- 2. Comparing this template with the waveform until a peak is found
- 3. Subtract the found peak to the signal spectrum
- 4. Iterating the search

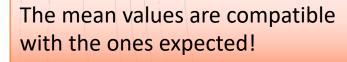
Matteo Greco

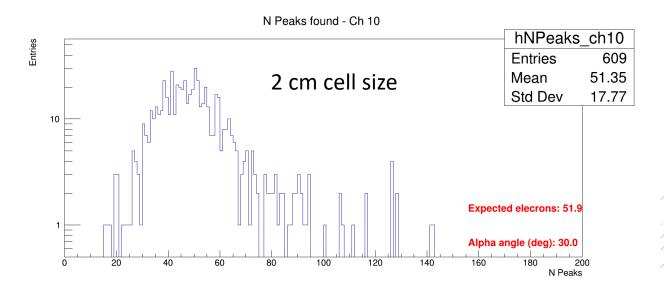

5. Stop when no new peak is found

A(k) 0.0 0 1,200 Krise = 3 0.269 Kfall = 9 1,000 1.0 Ktot = 11 0.744 0,800 $\tau 1 = 1 \text{ bin}$ $\tau 2 = 4 \text{ bins}$ 0.545 0,600 0.390 0,400 0.269 0.175 0,200 0.102 8 0.000 0.044 0 1 2 3 4 5 6 7 8 9 10 0.0 10

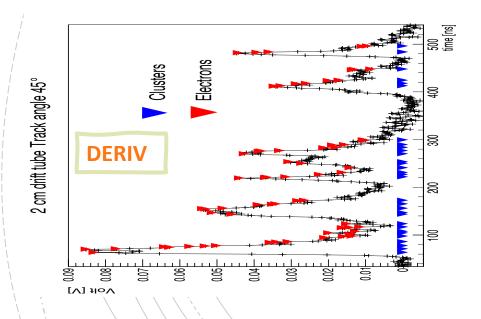


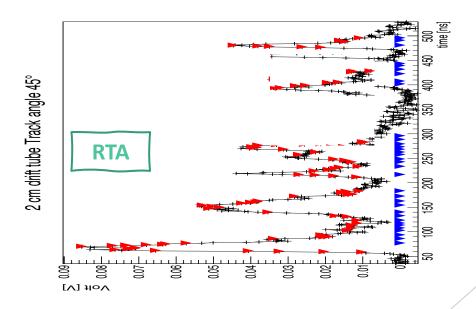
30°, nominal HV+20, 90%He-10%iC $_4$ H $_{10}$ Tube with 1 cm cell size and 20 μ m diameter


tmpSignal_afterFlt_Ch6_ev51_run_96

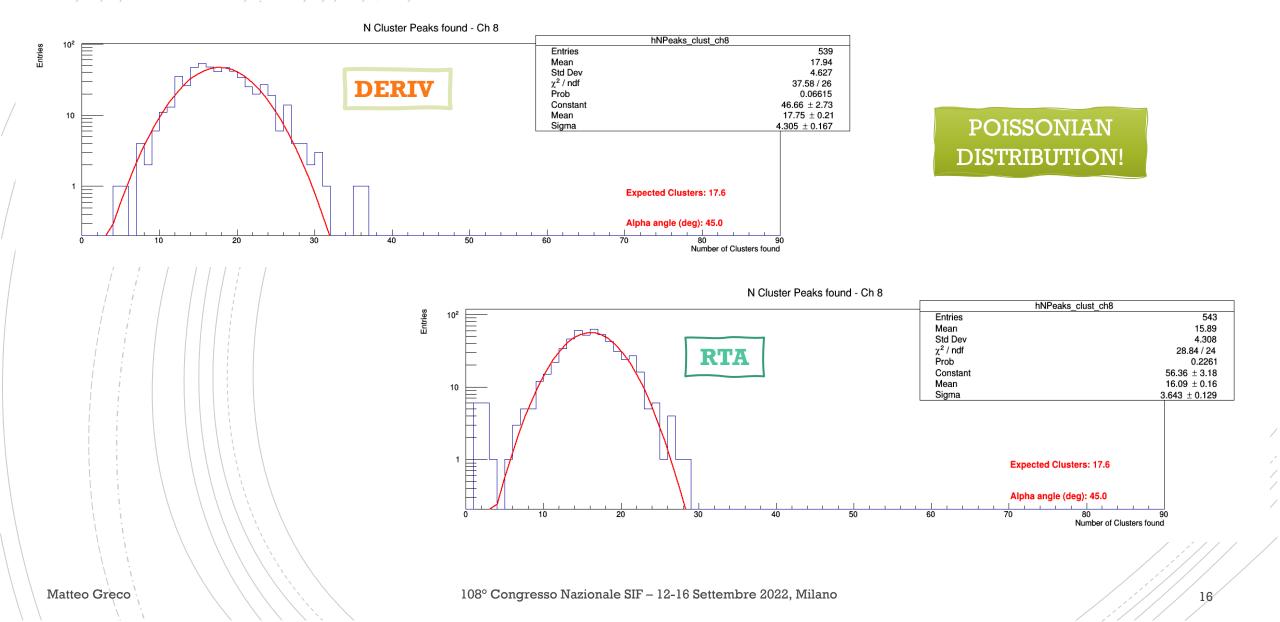

The running template algorithm (RTA): results

90%He-10%iC₄H₁₀ 30° nominal HV+20

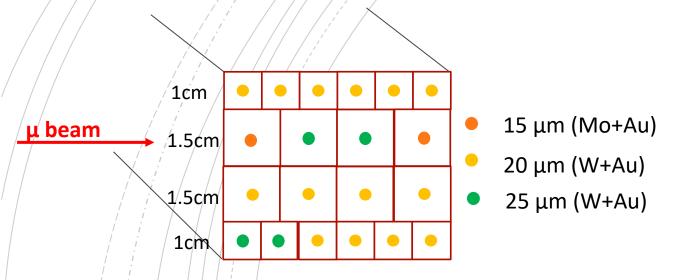

Matteo Greco



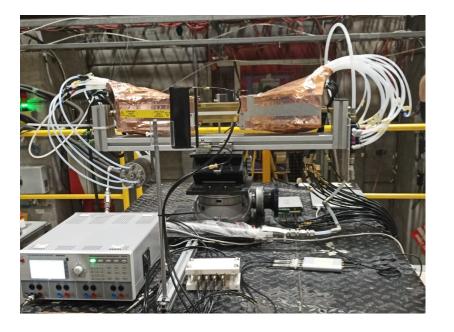
A single clusterization algorithm


Once found the electron peaks, *clusterization* of the electron peaks into ionization clusters has been implemented:

- 1) Association of electron peaks consisting in consecutive bins (difference in time == 1 bin) electrons to a single electron in order to eliminate fake electrons
- 2) Contiguous electron peaks which are compatible with the electron diffusion time (2.5 ns or 3 bins) must be considered belonging to the same ionization cluster
- 3) Position of the clusters is taken as the position of the last electron in the cluster



Comparison of the two algorithms



Some news about the ongoing test

The second part of the test has been done during July 2022 at CERN/H8

- The set up consists of:
 - 12 drift tubes 1 cm × 1 cm × 30 cm
 - 0 10 with 20 μm sense wire, 2 with 25 μm
 - 8 drift tubes 1.5 cm × 1.5 cm × 30 cm
 - \circ 2 with 15 µm sense wire, 4 with 20 µm, 2 with 25 µm
- We collected data at different percentages of He and isobutane: 90-10, 85-15, 80-20
- For different muon momenta: 40, 80, 180 GeV/c
- At different angles and different HV

Matteo Greco

Conclusion

- Cluster counting technique is a promising method to improve particle separation capabilities
- Analytical and simulations results confirm the expectations, and the test beam plays a key role in this scenario

Next steps:

- Analyzing data from the second part of the test beam
- Optimizing the two cluster counting algorithms and exploiting the possibility of using neural networks or AI and apply them on the new collected data

THANKS FOR THE ATTENTION

The test beam crew

C. Caputo¹, G. Chiarello², A. Corvaglia³, F. Cuna^{3,4}, B. D'Anzi^{5,6}, N. De Filippis^{6,7}, F. De Santis^{3,4}, W. Elmetenawee⁶, E. Gorini³, F. Grancagnolo³, M. Greco^{3,4}, S. Gribanov, K. Johnson⁸, A. Miccoli³, M. Panareo³, A. Popov, M. Primavera³, A. Taliercio¹, G. F. Tassielli³, A. Ventura³, S. Xin⁹, Fangyi Guo⁹, Shuaiyi Liu⁹

¹Université Catholique de Louvain, Belgium

²Istituto Nazionale di Fisica Nucleare, Pisa, Italy

³Istituto Nazionale di Fisica Nucleare, Lecce, Italy

⁴Università del Salento, Italy

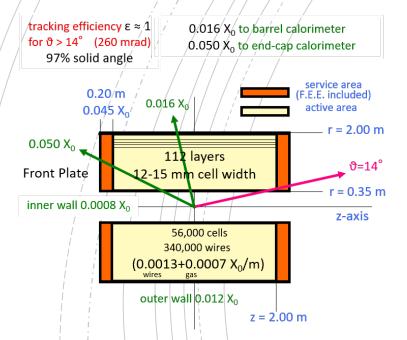
⁵Università degli Studi di Bari »Aldo Moro», Italy

⁶Istituto Nazionale di Fisica Nucleare, Bari, Italy

⁷Politecnico di Bari

⁸Florida State University

⁹Institute of High energy Physics


BACKUP

Matteo Greco

108° Congresso Nazionale SIF – 12-16 Settembre 2022, Milano

The IDEA drift chamber

- The IDEA drift chamber (DCH) is the tracker of FCC-ee and CEPC.
- It is designed to provide efficient tracking, high precision momentum measurement and excellent particle identification by exploiting the application of the cluster counting technique.

- He based gas mixture
 (90% He 10% i-C₄H₁₀)
- Full stereo configuration with alternating sign stereo angles ranging from 50 to 250 mrad
- 12÷14.5 mm wide square cells 5:1 field to sense wires ratio
- 56,448 cells
- 14 co-axial super-layers, 8 layers each (112 total) in 24 equal azimuthal (15°) sectors

MAIN GOALS

Gas containment – wire support functions separation:

the total amount of material in radial direction, towards the barrel calorimeter, is of the order of $1.6\%~X_0$, whereas in the forward and backward directions it is equivalent to about $5.0\%~X_0$, including the endplates instrumented with front end electronics.

Feed-through-less wiring:

allows to increase chamber granularity and field/sense wire ratio to reduce multiple scattering and total tension on end plates due to wires by using thinner wires

Cluster timing:

allows to reach spatial resolution < $100 \mu m$ for 8 mm drift cells in He based gas mixtures (such a technique is going to be implemented in the MEG-II drift chamber under construction)

Cluster counting:

allows to reach dN_{cl}/dx resolution < 3% for particle identification (a factor 2 better than dE/dx as measured in a beam test)

MORE INFORMATION:

https://indico.cern.ch/event/656491/contributions/2939121/attachments/1629781/2597342/IDEA-CDCH_FCCweek18.pdf

Context

- ☐ Offline analysis on November test beam data taken with 165 GeV/c muons beams from 11st November
- ☐ Dealing with 11 drift tubes having cell sizes of 1-cm,2-cm and 3-cm:
- ➤ Channels 0,1,2,3 are Trigger Counters

10cm x 10cm 165 GeV/c μ beam 1500 μ /spill

- ➤ Channels 4,5,6,7,8,9 are the 6 Drift Tubes of 1 cm cell size respectively:
 - Channel 4 with a wire diameter of 10 micrometer
 - Channel 5 with a wire diameter of 15 micrometer
 - Channel 6 and 7 with a wire diameter of 20 micrometer
 - Channel 8 and 9 with a wire diameter of 25 micrometer.
- ➤ Channels 10,11,12 are the 3 Drift Tubes of 2 cm cell size respectively:
 - Channel 10 with a wire diameter of 20 micrometer
 - Channel 11 with a wire diameter of 25 micrometer
 - Channel 12 with a wire diameter of 40 micrometer

1 cm
3 cm
2 cm

- ➤ Channels 13,14 are the 2 Drift Tubes of 3 cm cell size respectively:
 - Channel 13 with a wire diameter of 25 micrometer
 - Channel 14 with a wire diameter of 40 micrometer

Signal acquisition window is out of the signal range

Addictional info on DERIV algorithm

First and second derivative have been evaluated in code doing:

NOTE:

```
fderiv[ip] = (Waves_normalized.Y[ip+1]-Waves_normalized[ip-1])/2
sderiv[ip] = (fderiv[ip+1]-fderiv[ip-1])/2
sigd1 = rms/sqrt(2)
sigd2 = rms/2
```

The rms has been computed as:

NOTE: r.m.s. has been defined over the first 30 bins as the r.m.s. = 1

 $\sqrt{\frac{\sum_{i=0}^{30}(Wave_normalized[channel].Y - bsln)^2}{30}}$

dE/dx and dN/dx resolution comparison

$$\frac{\sigma_{dE/dx}}{\left(dE/dx\right)} = 0.41 \cdot n^{-0.43} \cdot \left(L_{track}[m] \cdot P[atm]\right)^{-0.32}$$

from Walenta parameterization (1980)

$$\frac{\sigma_{dN_{cl}/dx}}{\left(dN_{cl}/dx\right)} = \left(\delta_{cl} \cdot L_{track}\right)^{-1/2}$$

from Poisson distribution

$$L_{track} = 0.6 m$$

 $P = 1 atm$
 $n = 64$

$$L_{track} = 0.6 \text{ m}$$

 $\delta_{cl} = 12.5/\text{cm}$

$$\frac{\sigma_{dE/dx}}{(dE/dx)} = 8.1\%$$

$$\frac{\sigma_{dN_{cl}/dx}}{(dN_{cl}/dx)} = 3.6\%$$

The DAQ system: binary format file

Header relating to the board consisting of the words:

DRS8

TIME

B#XXX (XXX represents the card number and changes according to the WDB, in this case 033)

Calibration information

Header/EVEN/T

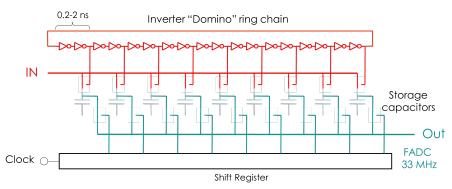
Serial. Number

Time information

Channel Information

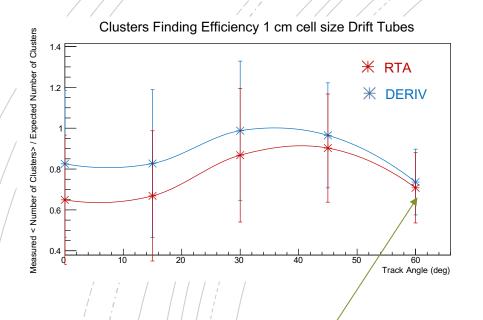
The data files have been converted in root format to accomplish the data analysis. Data at different configuration have been collected:

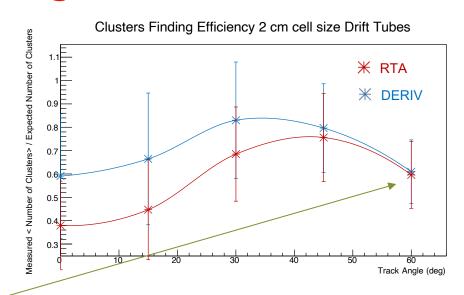
- 90%He-10%iC₄H₁₀
- 80%He-20%iC₄H₁₀
- HV nominal (+10,+20,+30,-10,-20,-30)
- Angle 0° ,30°,45°,60°

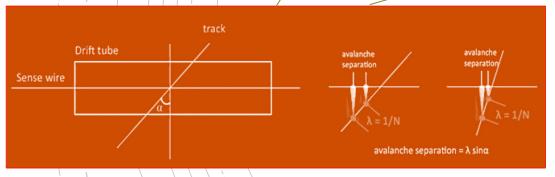

Word	Byte 0	Byte 1	Byte 2	Byte 3	Contents
0	,D,	'R'	'S'	'8'	File header, Byte 3 = version
1	'T'	T	'M'	'E'	Time Header
2	'B'	'#'	Board number		Board serial number
3	,C,	'0'	,0,	'0'	Channel 0 header
4	Time Bin Width #0				Effective time bin width in ns fo channel 0 encoded in 4-Byte floating point format
5	Time Bin Width #1				
1027	Time Bin Width #1023				
1028	,C,	'0'	,0,	'1'	Channel 1 header
1029	Time Bin W	idth #0			
1030	Time Bin Width #1				Effective time bin width in ns for channel 1 encoded in 4-Byte floating point format
2052	Time Bin W	idth #1023			
2053	'E'	'H'	'D'	'R'	Event Header
2054	Event Seria	l Number			Serial number starting with 1
2055	Year Month			Event date/time 16-bit values	
2056	Day		Hour		
2057	Minute		Second		
2058	Millisecond		Range		Range center (RC) in mV
2059	'B'	'#'	Board number		Board serial number
2060	,C,	'0'	,0,	'0'	Channel 0 header
2061	Scaler #1				Scaler for channel 0 in Hz
2062	'T'	'#'	Trigger cell		Channel 0 first readout cell
2063	Voltage Bin #0		Voltage Bi	n #1	Channel 0 waveform data encoded in 2-Byte integers. 0=RC-0.5V and
2064	Voltage Bin #2		Voltage Bi	n #3	
					65535=RC+0.5V. RC see header.
2574	Voltage Bin #1022		Voltage Bin #1023		
2575	,C,	'0'	,0,	'1'	Channel 1 header
2576	Scaler #2			Scaler for channel 1 in Hz	
2077	'T'	'#'	Trigger ce	II	Channel 1 first readout cell
2578	Voltage Bin	#0	Voltage Bin #1		Channel 1 waveform data encoded in 2-Byte integers. 0=RC-0.5V and 65535=RC+0.5V. RC see header.
2579	Voltage Bin #2		Voltage Bi	n #3	
3089	Voltage Bin #1022		Voltage Bi	n #1023	
	'E'	(H)	'D'	'R'	Next Event Header

The DAQ system: WDB wave dream board

- 16 ch Drs4 REAdout Module (Domino Sampling Rate)
- 16 channels data acquisition board designed and used by the MEG2 experiment at PSI ($\mu \rightarrow e + \gamma$)




- Analog switched capacitor array: analog memory with a depth of 1024 sampling cells, perform a "sliding window" sampling.
- 500MSPS ↔ 5GSPS sampling speed with 11.5 bit signal-noise ratio
- 8 analog channels + 1/clock-dedicated channel for sub 50ps time alignment
- Pile-up rejection | O(~10 ns)
- Time measurement | O(10 ps)
- Charge measurement O(0.1%)
- The recent version, DR\$4, is capable of digitizing 9 differential input channels at sampling rates of up to 6 Giga-samples per second(GSPS) with an analogue bandwidth of 950MHz(3 dB).
- The channel depth can be configured between 1024 and 8192 cells, and the signal-to-noise ratio allows a resolution equivalent to more than 11 bits.
- The high bandwidth, low power consumption and short readout time make this chip attractive for many experiments, replacing traditional ADCs and TDCs


MORE INFORMATION:

Application of the DRS chip for fast waveform digitizing, Stefan Ritt, Roberto Dinapoli, Ueli Hartmann, Nuclear Instruments and Methods in Physics Research A 623 (2010) 486–488

Comparison between the two algorithms

Space charge, attachment and recombination effects affect the experimental cluster counting efficiency