Low intensity focused ultrasound based therapeutic technologies for neurodegenerative and neurooncological diseases

Allegra Conti

Sezione di Fisica Medica, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma 'Tor Vergata'

Therapeutic Low intensity focused ultrasound

What is Focused Ultrasound?

Like a magnifying glass focuses light, focused ultrasound concentrates ultrasound energy on a target in the body without harming nearby tissue.

HIFU vs LIFU

High Intensity focused ultrasound (HIFU)

- Irreversible cell death
- Surgical Ablation (e.g. Essential tremor)

Low-intensity focused ultrasound (LIFU)

- Reversible biological effects
- Safe and repeatable
- More focused than e.g. magnetic/electric fields
- Manifold applications in e.g. tissue permeabilization, neuromodulation, WPT
- Poised to enter more and more field in biomedical research

Therapeutic Low intensity focused ultrasound

Development Stages of FUS Research

*Device manufacturers can choose to discontinue their maintenance of a country's regulatory approval. If that country is the only one with approval for a specific indication within a geographic region, the total number of approvals will decrease.

HIFU IN HUMANS

What Can it Treat?

Worldwide, focused ultrasound is approved to treat more than 20 diseases and is being researched to treat many more.

Therapeutic applications range from deep brain neuromodulation to reversible blood-brain barrier opening for a local enhancement of therapeutics uptake into the brain tissue.

	Stages			Total ¹
Ultrasound application Biological effects	Preclinical	Clinical	Commercial	
Nonthermal Neuromodulation				
Alzheimer's disease	1	-	1	2
Cancer pain	1	-	-	1
Depression	4	4	-	8
Epilepsy	9	3	-	12

	Stages			Total
Ultrasound application Biological effects	Preclinical	Clinical	Commercial	
Nonthermal - BBB opening Drug delivery, vehicle				
Glioblastoma	1	-	-	1
Nonthermal - BBB opening Gene delivery				
Huntington's disease	1	-	-	1
Parkinson's disease, tremor	1	-	-	1
Parkinson's disease, underlying cause	4	-	-	4
Rett syndrome	1	-	-	1
Nonthermal - BBB opening Stem cell delivery				
Alzheimer's disease	1	-	-	1

	Stages			Total	
Iltrasound application Biological effects	Preclinical	Clinical	Commercial		
Nonthermal - BBB opening BBB opening					
Alzheimer's disease	7	6	-	10	
Amyotrophic lateral sclerosis	1	-	-	1	
Brain tumors, general	2	-	-	2	
Breast tumors, malignant	1	-	-	1	
Dementia	1	-	-	1	
Epilepsy	1	-	-	1	
Glioblastoma	-	7	-	7	
Opioid and other addictions	1	-	-	1	
Parkinson's disease, underlying cause	-	1	-	1	
Nonthermal - BBB opening Drug delivery					
Alzheimer's disease	7	5	-	11	
Amyotrophic lateral sclerosis	1	-	-	1	
Astrocytoma	2	-	-	2	
Brain metastases, breast cancer	2	1	-	2	
Brain tumors, general	1	1	-	2	
Dementia	-	1	-	1	
Epilepsy	2	-	-	2	
Glioblastoma	14	5	-	16	
Neuromyelitis optica	1	-	-	1	
Parkinson's disease, underlying cause	6	1	-	6	
Pontine glioma	1	-	-	1	
Spinal cord injury	2	-	-	2	
Stroke, intracerebral hemorrhage	1	-	-	1	
Stroke, thromboembolic	2	-	-	2	
Traumatic brain injury	1	-	-	1	
Nonthermal - BBB opening Drug delivery, immunotherapeutic					
Alzheimer's disease	2	-	-	2	
Astrocytoma	1	-	-	1	
Glioblastoma	1	-	-	1	

Low intensity focused ultrasound systems

ExAblate Neuro NSG-TEC

Very precise (MR guidance and multi array)
 X Expensive

X It's use for LIFUS applications limited by the company

SonoCloud

Already in use in clinical trials aiming at treating brain tumors
 X Suitable only for BBB opening and drug delivery
 X Invasive

> NaviFUS NaviFUS

- Already in use in clinical trials
- ✓ Suitable both for BBB opening and NeuroStimulation
- Less expensive than ExAblate

X Single Element transducer (larger focus than with phase arrays) X Not MR guided

Acoustic Neuromodulation

There are numerous hypotheses that aim to explain the modulation mechanisms induced by FUS.

These assumptions are based on

Mechanical Effects:

The interference of ultrasound with the depolarization of the membrane through its mechanical deformation.

Activation of mechanosensitive ion channels in neurons and other types of brain cells such as astrocytes

> Thermal effects

Mechanical Effect

The mechanical energy of ultrasound generates periodic expansions and contractions of the membrane. The effect is mediated by various mechanisms.

1st mechanism: activation of mechanosensitive proteins

The pressure of the acoustic radiation mechanically lengthens the lipid bilayer of neurons by opening voltage-gated ion channels with mechanosensitive properties, including sodium, calcium and potassium channels (Na +, Ca2 + and K +), which in turn cause depolarization and neuronal excitation.

2nd mechanism: Cavitation

The mechanical energy of ultrasound generates periodic expansions and contractions of the membrane (CAVITATION) which modify its capacity. This phenomenon creates capacitive currents, which can potentially activate voltage-gated sodium and potassium channels

Acoustic Neuromodulation: Mechanisms

Thermal Effect

Only in certain acoustic regimes (high intensity, DC, RPF).

The acoustic energy is absorbed and dispersed in the passage of the FUS in the tissues. The energy released by the ultrasonic beam to the tissues is converted into heat, which generates a local temperature rise and modification the capacity of the membrane.

The thermal effect can alter neuronal functions **

- Reversibly modify synaptic transmission (therapeutic action)
- Irreversibly denaturing proteins (harmful action)
- Thermoablating the tissue (non-functional action to neurotransmission)

** To avoid potentially harmful overheating effects, the American Institute of Ultrasound in Medicine (AIUM) has set the following acoustic intensity limits not to be exceeded in experiments on mammals (including humans)

intensity <100 mW / cm² / temporal exposure <500 s for unfocused ultrasound intensity <1 W / cm₂ / temporal exposure <50 s for FUS.

Acoustic Neuromodulation: Possible applications

FUS treatments:		Alzheimers Dement (N Y). 2021; 7(1): e12121. Published online 2021 Feb 25. doi: <u>10.1002/trc2.121</u> Transcranial ultrasound pulse stimula patients: A follow-up study	21 ation reduces cortical atrophy in	PMCID: PMC7906128 PMID: <u>33681449</u> n Alzheimer's
Alzheimer's Diseas	е	<u>Tudor Popescu,^{⊠ 1, 2} Cyril Pernet</u> , ³ and <u>Roland Beisteiner</u> ^{⊠ 2}		
Depression		► Author information ► Article notes ► Copyright and	License information Disclaimer	
> Epilepsy	Received: 4 July 2020 Revised: 5 September 2020 Accepted: 24 Sep DOI: 10.1111/cns.13463	otember 2020		
,	ORIGINAL ARTICLE	CNS Neuroscience & Therapeutics WILEY		
	Low-intensity pulsed ultrasour behaviors in a rat model of chro Jinniu Zhang ¹ Hui Zhou ² Jian Yang ^{1,3} Dandan Shi ¹ Long Meng ² Weibao Qiu ² Gang Wang ^{1,3}			

Received: 3 June 2021	Revised: 7 October 2021	Accepted: 7 October 2021	
DOI: 10.1111/epi.17105		Failana	
RESEARCH	ARTICLE	cpiieps	la
Pilot stu	dy of focus	sed ultrasound for drug-resistant epilep	sy
			5
Cheng-Chia l	Lee ^{1,2,3} Chien	-Chen Chou ^{2,3,4} Fu-Jung Hsiao ³ Yi-Hsiu Chen ¹	
Chun-Fu Lin	^{1,2} Ching-Jen	Chen ⁵ Syu-Jyun Peng ⁶ Hao-Li Liu ⁷ Hsiang-Yu Yu ^{2,3}	^{,4} 🕞

FUS-induced Blood- Brain Barrier Opening

The blood-brain barrier is the limiting factor to cure brain diseases but it can be transiently disrupted using ultrasound

Blood Brain Barrier:

Allows:

- the passage of water, some gases, and lipid-soluble molecules by passive diffusion
- ✓ the selective transport of molecules such as glucose and amino acids that are crucial to neural function

Impedes:

- **x** the passive diffusion of 95 % of small molecules and 100% of biotherapies,
 - especially ionic, hydrophilic or large (> 400 Da) molecules

..but it can be transiently opened by using ultrasound!

Ultrasound aided drugs delivery within the brain

microbubbles intravenous injection + low intensity pulsed focused ultrasound = Reversible BBB opening

(Hynynen et al., Radiology, 2001)

Prof. I. Aubert, University of Toronto

Ultrasound aided drugs delivery within the brain

Technique mainly used to:

Target Delivery of theranostics particles/ therapeutics molecules to specific regions of the brain (e.g. anti-amyloid antibodies delivered to reduce widespread plaque pathology antibodies, plasmids and viral vectors)

Treatment of brain tumours where the access of the drug would be limited to the tumour and it's periphery (principally chemioterapeutics)

- reducing of the administrated particles dose
- preventing from accessing the remaining healthy brain tissue

Brain tumors therapy is limited by

- > Blood-Tumor Barrier, more permeable than BBB
- Blood-Brain Barrier, still intact in the infiltrative areas.

Previous studies have already used Ultrasound to deliver particles to brain tumors...

± Show more

Author, Year	MBs type	Animal model	Substance delivered	Study conclusion	Ref.
Treat et el, 2007, 2012	Optison	Rat 9L glioma model	Liposomal-DOX [70-100 nm]	MB-FUS + Liposomal-Dox delivery controlled tumor progression and improved animal survival	[78,79]
Liu et al., 2010	Sonovue	Rat C6 glioma model	Evans Blue [960 Da], BCNU [214 Da *]	Unfocused low-frequency (28-kHz) US with 6-10 min exposure Obtain wide areas of BBB opening and low incidence of hemor- rhagic complications	[111]
Liu et al., <mark>2</mark> 010	Sonovue	Rat C6 glioma model	BCNU [214 Da], Evans Blue [960 Da *], Magnevist [928 Da]	Delivery of chemotherapeutic agent BCNU MB-FUS + BCNU provide better tumor progression control and animal median survival improved by 72%	[81]
Liu et al., 2010	Sonovue	Rat C6 glioma model	Epirubicin [544 Da], MNP [6-12 nm], Evans Blue [960 Da *], Magnevist [928 Da]	Delivery of chemotherapeutic agent Epirubicin conjugated on magnetic nanoparticle Epirubicin-loaded MNPs + FUS + MT increase in MNP delivery and slowed tumor growth	[106]
Chen et al., 2010	Sonovue	Rat C6 glioma model	BCNU [214 Da], BCNU on Fe ₃ O ₄ SPAnH nanoparticles [10-20 nm], Magnevist [928 Da]	Delivery of chemotherapeutic agent BCNU conjugated with magnetic Fe3O4SPAnH particles following FUS and magnet applied for 24 h to target Improved BNCU delivery	[112]
Ƴang et al., 2012	Sonovue	Rat F98 glioma model	Evans Blue [960 Da *], Om- niscan [573 Da], 99mTc-DTPA [492 Da]	Applied SPECT/CT to monitor MB-FUS-BBB opening	[59]
Yang et al., 2011	Sonovue	Rat F98 glioma model	Evans Blue [960 Da *], Om- niscan [573 Da]	Increase in EB extravasations in sonicated brain with significant EB concentration increase Damage occurred after repeated sonication	[50]
Yang et al., 2012	Sonovue	Mice GBM-8401 model	Liposomal-DOX [70-100 nm]	Radio-labeled liposomal-DOX to perform PK analysis in nuclear imaging Animals receiving the drugs followed by MB-FUS-BBB opening	[113]
Yang et al., 2012	Sonovue	Mice GBM-8401 model	Liposomal-DOX [70-100 nm]	MB-FUS-BBB opening enhanced accumulation of the drug in tumor cells Significantly inhibited tumor growth compared with chemo- therapy alone	[114]
Ting et al., 2012	BCNU-load ed MBs (Self-made)	Rat C6 glioma model	BCNU [214 Da], Evans Blue [960 Da *]	Development of BCNU drug-loaded MBs for drug delivery BCNU-MBs prolonged half-life of BCNU by over 5-fold Tumor progression was successfully suppressed by BCNU-MBs + EUS	[103]

Brain tumors therapy is limited by

- Blood-Tumor Barrier, more permeable than BBB
- Blood-Brain Barrier, still intact in the infiltrative areas.

Invasive

The position of the transducer is fixed: only one region of the brain can be treatead

18

The goal of this study:

8 points sonication

- Enhancing radiosensitizing nanoparticles concentration within tumors, by using delivery induced by focused ultrasound
- Study their uptake and clearance to choose the best time for radiotherapy

Materials and Methods:

20

Animals:

8 Ficher rats (WT)
Age: 6 months old
Sex: Female
Weight: 250 g (before tumor implantation)-180 g (at the sacrifice)
Tumor cells: 9Lp + 12.5 μL (20 millions/mL)
Implantation of two tumors (one used as control)
Treatment: 2-3 weeks after the tumor implantation
Ultrasound: 8 points sonication, 1.2 MPa, 1.5 MHz, 3% DC (3 ms time per shot/ 115 ms pause)

Materials and Methods:

21

Compound used:

AGuIX : 50 μ mol of powder diluted in 200 μ L pf PPI water + 160 μ L of Dextran (25 mg/mL, size 70 kDa).

AGuiX is a theranostic agent since :

- The efficacy of radiotherapy can be boosted by using high-atomic-number materials such as gadolinium to increase the target's absorption of ionizing radiation.
- Gadolinium acts as an MRI contrast agent.

Materials and Methods:

Compound used: AGuIX

Radiosensitization of brain metastases using AGuIX with Radiotherapy

NIH U.S. National Library of Medicine **ClinicalTrials.gov**

HEALTH AND MEDICINE

Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective

Camille Verry¹, Sandrine Dufort², Benjamin Lemasson³, Sylvie Grand¹, Johan Pietras⁴, Irène Troprès⁴, Yannick Crémillieux⁵*, François Lux⁶, Sébastien Mériaux⁷, Benoit Larrat⁷, Jacques Balosso¹, Géraldine Le Duc², Emmanuel L. Barbier³, Olivier Tillement⁶

NANORAD Phase1b trial

Targeting and contrast enhancement after AGulX intravenous injection @100 mg/kg on a brain metastases patient The targeting was proven on 15 patients over 15

Reduction of the total tumor size of 45 % 1 month and of 97 % 1 year after initiation of the treatment *Clinical benefit was shown for 13 patients over 14*

Row	Saved	Status	Conditions	Locations
1		Completed	Brain Metastases	University Hospital Grenoble Grenoble, France
2		Recruiting	Brain Metastases, Adult Radiotherapy	Institut Régional du Cancer Montpellier, Occitanie, France Institut Claudius Regaud Institut Universitaire du Cancer Toulouse Oncopole Radiothérapie Toulouse, Occitanie, France Centre Leon Berard Lyon Lyon, Rhones Alpes, France (and 12 more)
3		Recruiting	Glioblastoma	CHU de Brest Brest, France Centre Jean Perrin Clermont-Ferrand, France CHU de Grenoble Grenoble, France (and 3 more)
4		Terminated	Brain Metastases	Centre Léon Bérard Lyon, France Centre Antoine Lacassagne Nice, France
5		Recruiting	Brain Cancer Brain Metastases Melanoma (and 13 more)	Brigham and Women's Hospital Boston, Massachusetts, United States Dana Farber Cancer Institute Boston, Massachusetts, United States
6		Recruiting	Non-small Cell Lung Cancer Advanced Pancreatic Adenocarcinoma Unresectable Pancreatic Cancer Ductal Adenocarcinoma of the Pancreas	Brigham and Women's Hospital Boston, Massachusetts, United States Dana Farber Cancer Institute Boston, Massachusetts, United States
7		Recruiting	Gynecologic Cancer	Centre Hospitalier Lyon Sud Pierre-Bénite, Rhône, France Gustave Roussy Villejuif, Val De Marne, France
8		Not yet recruiting	Recurrent Cancer Previous Radiation	

Validation of the model through in vivo experiments

Experimental set up to open BBB under MRI

Motors to target and choose the location and extent of the BBB disruption

7T MRI scanner

Larrat et al., 2010 Magnin et al., 2015

1.5 MHz transducer
 1.2 MPa
 3% duty cycle for 120s

Thermoguide software

Experimental protocol to open BBB under MRI

Tumor delivery of radiosensitizing nanoparticles

Post-processing:

1) Co-registration of the T_{2w} -images with the concentration maps

2) Manual definition of a 3D ROI inside each tumor

3) Study of the AGuiX concentration in the ROIs, both in the sonicated and in the control tumor, over time

Tumor delivery of radiosensitizing nanoparticles

Tumor delivery of radiosensitizing nanoparticles

Nanoparticles concentration delivered with both methods

Results

Sonicated tumor shows higher nanoparticles maximum concentrations for both acoustic strategies

Radiotherapy effects

Comparison of the effects of a single dose of AguiX-enhanced RT (25 Gy) in animals carrying GBM with or without FUS.

- Combining AguiX + RT actually induces tumor shrinking. Crucially, the extent of this shrinking is enhanced by approximately 170% by FUS application.
- Also, after tumor growth resumes at a later timepoint, when using FUS + AguiX it is still only at 27% of the tumor growth observed when using AguiX alone
- Evolution of tumor volumes after radiotherapy administration. Blue, orange and grey curves represent tumors treated when 68%, 72% and 93% of the maximum amount of AGuiX deliverable are present within their volume.

MFAG 2020 ID24636

SG-2019-12369035

FUSRADIO: enhancing radiotherapy in persistent Glioblastoma through focused ultrasound

✓ AIFA approved

(B) Glioblastoma treatment with Radiotherapy + FUS-induced BBB/BTB permeabilization + AguiX administration

EXCLUSION CRITERIA

INCLUSION CRITERIA

Contra-indication, sensitivity or allergy to gadolinium

Patients unable to undergo or tolerate MRI

Previous brain irradiation

Previous partial resection, biopsy or radiological diagnosis

Not fit for Standard Radiotherapy (60 Gy/30 fractions of 6 weeks)

< 18 yo

(rs-fMRI, T1-w, T2-w, MR-Angiography)

Objectives:

Expected to start the recruitment in January 2023

• Assessment of AGuIX Activity as a RT therapy enhancer for treating pGBM.

Evaluation of the effects of the AGuIX+RT protocol in pGBM on:

Tumour volume Volume;

Tumour vasculature and metabolism;

Progression-free survival (PFS)

Overall Survival (OS);

Quality of life (Qol);

Cognitive abilities;

The evaluation of side effects arising during RT+TMZ.

Grazie per l'attenzione

Allegra Conti, allegra.conti@uniroma2.it

Sezione di Fisica Medica, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma 'Tor Vergata'

