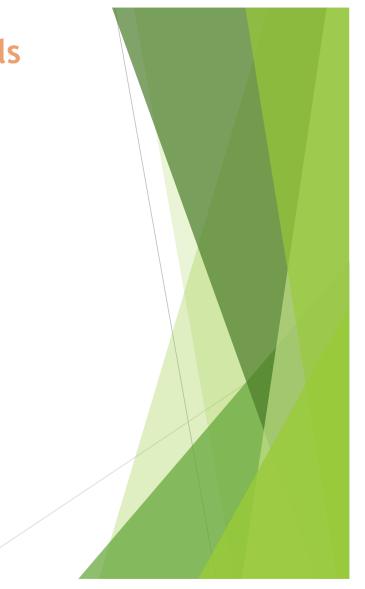


UNIVERSITÀ DEGLI STUDI DI MILANO

Physicochemical characterization of F127 hydrogels

CAROLINA PINI, Elisa Brambilla, Gianpietro Farronato, Salvatore Gallo, Cristina Lenardi, Francesco Orsini, Gianluca Martino Tartaglia, Silvia Locarno, Concetta Santangelo

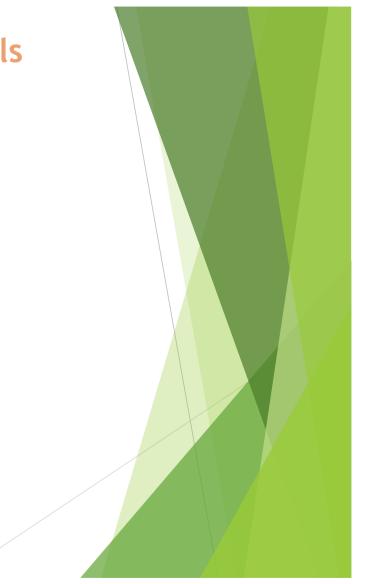


Convegno Nazionale SIF - Milano, 12-16 Settembre 2022

Thermogelling Hydrogels

Composed by:

• Three-dimensional polymeric networks of hydrophilic nature.


Thermogelling Hydrogels

Composed by:

• Three-dimensional polymeric networks of hydrophilic nature.

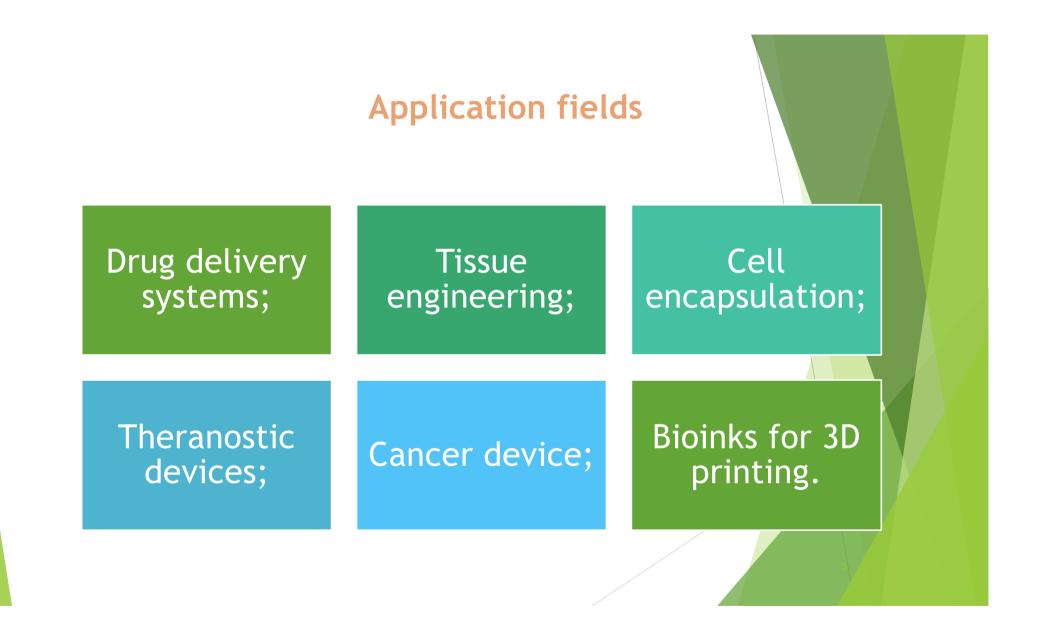
"Smart" hydrogels respond to external stimuli as:

- Temperature
- pH
- Ionic Force
- Solvent

Thermogelling Hydrogels

Composed by:

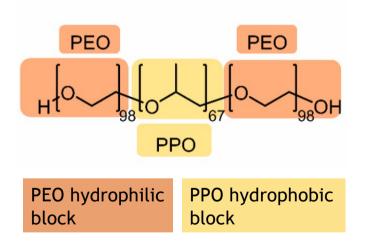
• Three-dimensional polymeric networks of hydrophilic nature.


"Smart" hydrogels respond to external stimuli as:

- Temperature
- pH
- Ionic Force
- Solvent

Application fields:

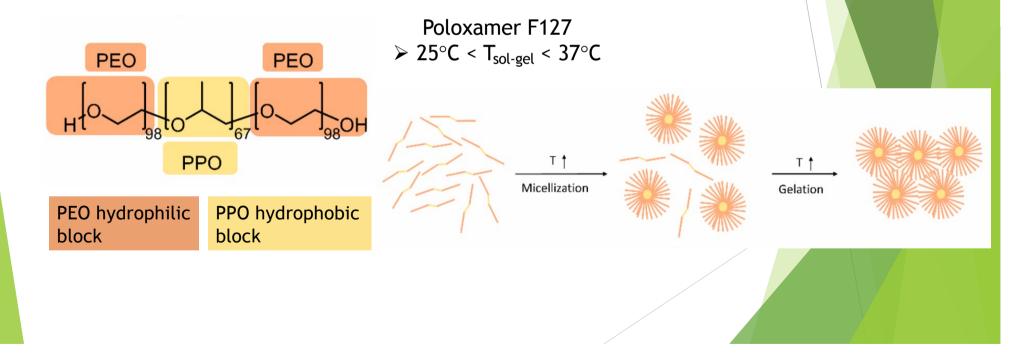
- Biomedicine
- Cosmetic


Target

Evaluate the changes imparted by different additives to F127 formulations to obtain the most suitable mixture to contain APIs for periodontitis therapy.

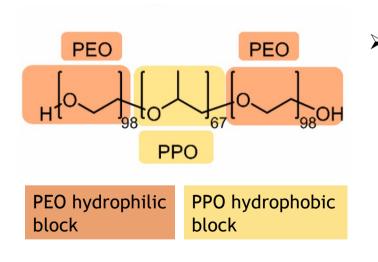
Poloxamer F127 The PEO-PPO-PEO block-copolymers are available in an extensive range of molecular weights and PPO/PEO ratios

Poloxamer F127


The PEO-PPO-PEO block-copolymers are available in an extensive range of molecular weights and PPO/PEO ratios

Poloxamer F127

The PEO-PPO-PEO block-copolymers are available in an extensive range of molecular weights and PPO/PEO ratios


By changing the length of PPO/PEO, the total molecular weights and the final properties as the T_{sol-gel} change.

Poloxamer F127

The PEO-PPO-PEO block-copolymers are available in an extensive range of molecular weights and PPO/PEO ratios

By changing the length of PPO/PEO, the total molecular weights and the final properties as the T_{sol-gel} change.

Poloxamer F127	
25°C < T _{sol-gel} < 37°C	•

PEO ₁₀₀ PPO ₆₅ PEO ₁₀₀	MW:	% PEO	% PPO	HBL	
	12600 Da	75	25	22	

Methods used for the characterization of the gels

- pH-evaluation
- Measurement of solution-gel transition temperature (T_{sol-gel})
- Erosion tests
- Determination of the viscosity
- AFM imaging
- In vitro release studies

Bulking agents were dissolved in H₂O MilliQ at room temperature than with the "cold method" F127 was solubilize. Using the "inverted tube test," T_{sol-gel} is measured

	ID formulation	F127%	Additive %	$T_{sol/gel} (°C)$	рН
4	F1	20	-	21.9	7.19
	F2	18	-	25.5	7.09
	F3	15	-	38.5	7.05
	F4	13	-	-* 🕇	6.95

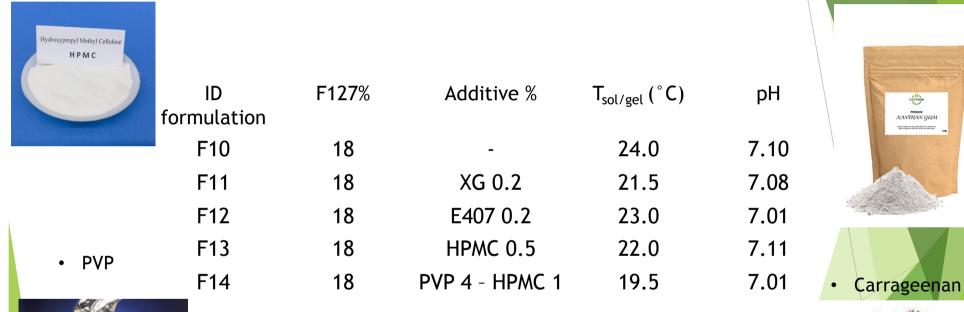
* The gelation did not occur in the range 4-50 $^{\circ}$ C

Bulking agents were dissolved in H₂O MilliQ at room temperature than with the "cold method" F127 was solubilize. Using the "inverted tube test," T_{sol-gel} is measured

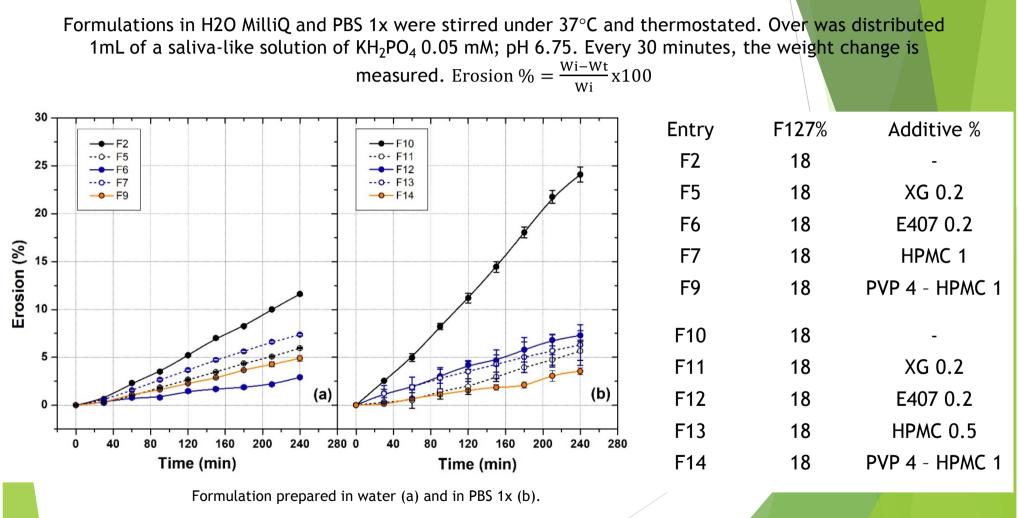
% Additive %	T _{sol/gel} (°C)	рН
-	21.9	7.19
-	25.5	7.09
-	38.5	7.05
-	-*	6.95
	- - -	- 25.5 - 38.5 *

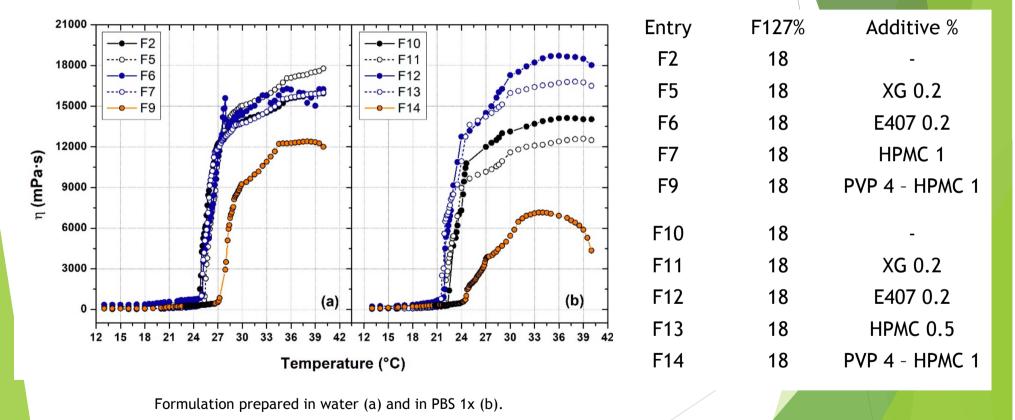
* The gelation did not occur in the range 4-50 $\,^\circ\text{C}$

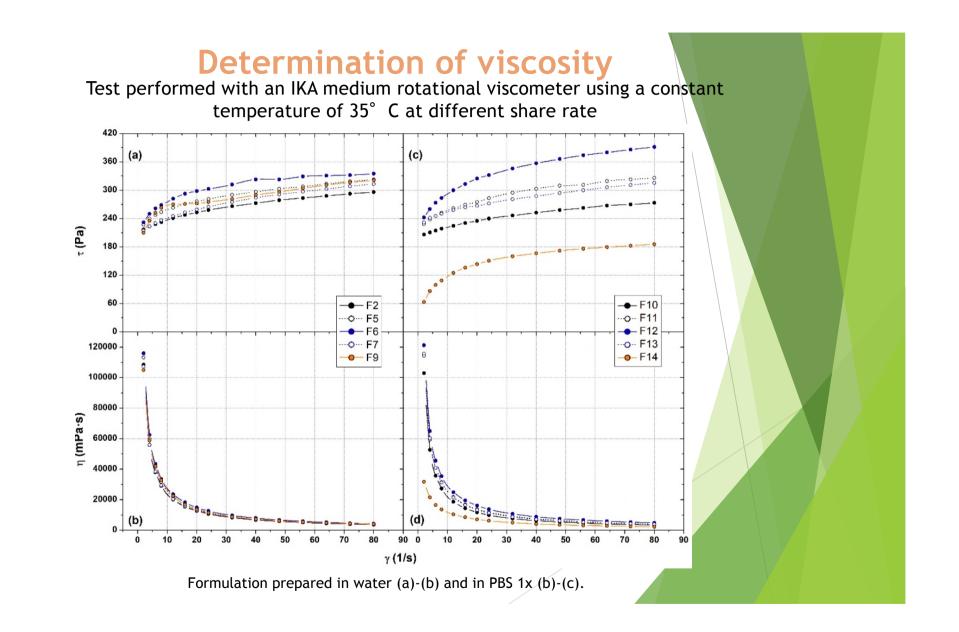
Bulking agents were dissolved in H₂O MilliQ at room temperature than with the "cold method" F127 was solubilize. Using the "inverted tube test," T_{sol-gel} is measured


Hydroxypropyl Methyl Cellulose H P M C						
	ID formulation	F127%	Additive %	$T_{sol/gel}$ (°C)	рН	
	F5	18	XG 0.2	22.0	6.45	
	F6	18	E407 0.2	25.0	6.61	
	F7	18	HPMC 1	22.5	5.89	
	F8	18	PVP 4	_*	5.82	
• PVP	F9	18	PVP 4 - HPMC 1	22.0	5.74	
	* T I I / ·					

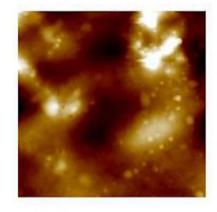
* The gelation did not occur in the range 4-50 $\,^\circ\text{C}$


Bulking agents were dissolved in PBS 1x at room temperature than with the "cold method" F127 was solubilize. Using the "inverted tube test," T_{sol-gel} is measured

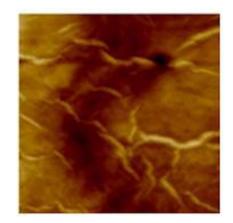



Erosion test

Determination of viscosity

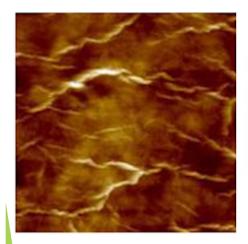

Test performed with an IKA medium rotational viscometer using a constant stir speed and a temperature ramp ranging from 12-40°C

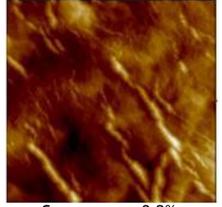
Atomic Force Microscope (TM-AFM) imaging



150.0 nm

75.0 nm

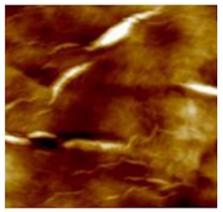

0.0 nm


F127 18% + Mucin

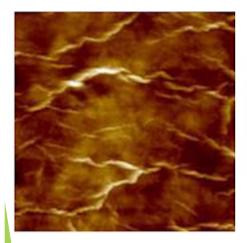
F127 18%

Sample w/o Mucin

HPMC 1% + Mucin

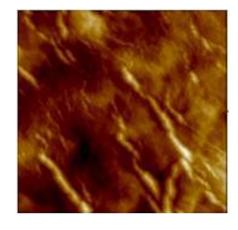


150.0 nm


75.0 nm

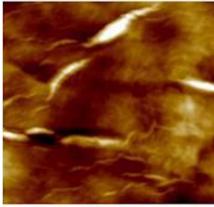
0.0 nm

Carrageenan 0.2% + Mucin

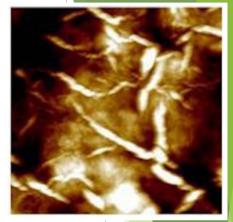


Sample w/o Mucin

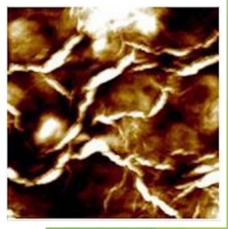
HPMC 1% + Mucin



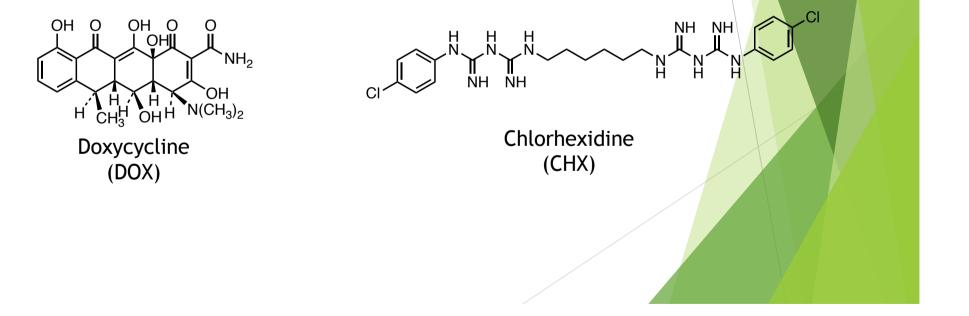
150.0 nm

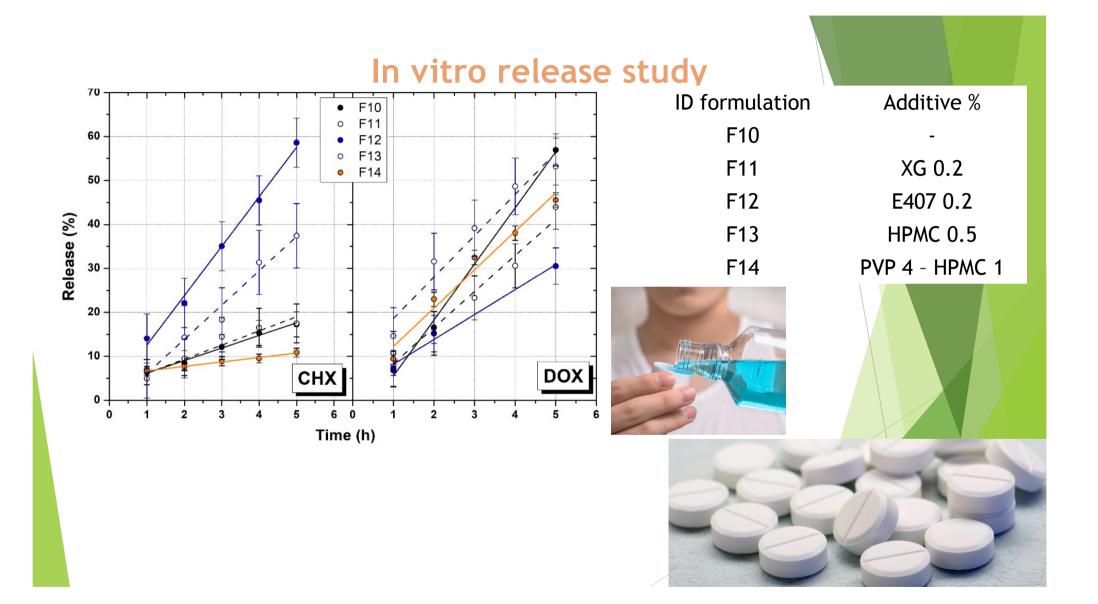

75.0 nm

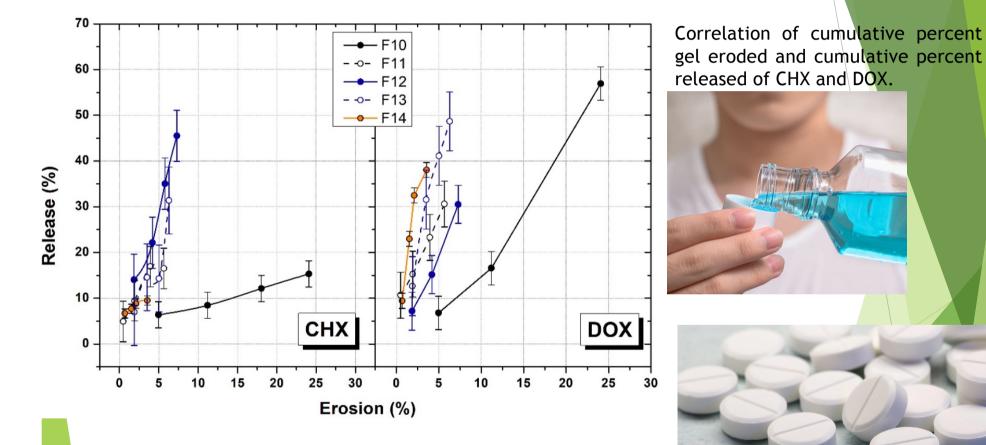
0.0 nm


Carrageenan 0.2% + Mucin

XG 0.2% + Mucin




PVP 4% + HPMC 1% + Mucin


In Vitro Release Studies

- Formulation examined: F10-14
- The release was performed using a semipermeable membrane with a MWCO of 12kDa
- The temperature was set at 37°C
- Analysis by UV-vis absorbition

In vitro release study

> Physical-chemical characterization of F127-based hydrogel in water and PBS:

- > Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:

- Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC \rightarrow mostly decrease T_{sol-gel}
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);

- Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC \rightarrow mostly decrease T_{sol-gel}
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);
 - Erosion test:

- Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC \rightarrow mostly decrease T_{sol-gel}
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);
 - Erosion test:
 - Hydrophilic polymers reduce the erosion rate;

- Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC → mostly decrease T_{sol-gel}
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);
 - Erosion test:
 - Hydrophilic polymers reduce the erosion rate;
 - TM-AFM:

- Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC \rightarrow mostly decrease T_{sol-gel}
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);
 - Erosion test:
 - Hydrophilic polymers reduce the erosion rate;
 - TM-AFM:
 - XG and PVP impart mucoadhesive properties;

- Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC \rightarrow mostly decrease T_{sol-gel}
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);
 - Erosion test:
 - Hydrophilic polymers reduce the erosion rate;
 - TM-AFM:
 - XG and PVP impart mucoadhesive properties;
 - Release study:

- > Physical-chemical characterization of F127-based hydrogel in water and PBS:
 - T_{sol/gel} affected by the dissolution medium:
 - $PBS \rightarrow$ reduction of gelation temperature
 - HPMC \rightarrow mostly decrease $T_{sol-gel}$
 - PVP alone \rightarrow lack of gelation (reduce the viscosity of the gel);
 - Erosion test:
 - Hydrophilic polymers reduce the erosion rate;
 - TM-AFM:
 - XG and PVP impart mucoadhesive properties;
 - Release study:
 - DOX: excipients decrease the release profile
 - CHX: release profile influenced by interactions between polymer and API.

Future applications

Periodontal Therapy

Cosmetic face masks

Development of supports for in vitro 3-D cell growth

an Open Access Journal by MDPI

Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the Chemical-Physical Properties

Elisa Brambilla; Silvia Locarno; Salvatore Gallo; Francesco Orsini; Carolina Pini; Marco Farronato; Douglas Vieira Thomaz; Cristina Lenardi; Marco Piazzoni; Gianluca Tartaglia

Polymers 2022, Volume 14, Issue 17, 3624

1st September 2022

Thank you for your attention

carolina.pini@studenti.unimi.it silvia.locarno@unimi.it salvatore.gallo@unimi.it cristina.lenardi@unimi.it