

Two-photon absorption cross-sections of eosin and hematoxylin

J. Parravicini, E. Hasani, L. Tartara

Università di Firenze, Dip. di Fisica & Astronomia Università di Pavia, Dip. di Ingegneria Industriale & dell'Informazione

Measuring two-photon absorption

Fluorescence generated by a lineshaped excitation

The linear excitation volume delivers a high photon flux even with a short confocal parameter.

- ➔ the signal level is high enough to avoid long integration times leading to noise
- ➔ a very accurate measurement of TPA spectra is thus possible.

Eosin & Hematoxylin

- frequently used in white-light microscopy

Advantages

- accessible staining protocol
- feasible and relatively cheap staining
- quick and fine inspection of the tissue
- employed in several kinds of tissues
- very low photobleaching
- longtime staining persistence for storage
- now used in **one-photon** fluorescence microscopy → generating a considerable quantity of fluorescence

- need of finding the correct absolute and mutual concentration
- potential arising of inversion quenching phenomena

Calibration and validation

Experimental estimation

- relative measurement calibrated with reference sample
- known quantum yield
 cross section

$$\delta_E = \delta_A \frac{\phi_A \eta_A C_A F_E}{\phi_E \eta_E C_E F_A},$$

REFERENCE (Alexa 488) δ_A = cross section ϕ_A = quantum yield η_A = collection efficiency C_A = concentration F_A = fluorescence photons (per second)

- SAMPLE (Eosin)
- δ_E = cross section
- φ_{E} = quantum yield
- η_E = collection efficiency
- C_E = concentration
- F_E = fluorescence photons (per second)

Spectral two-photon cross section Eosin

Dye	Concentrations (mM)
Eosin	14.45; 7.23; 3.61
Hematoxylin	3.31; 1.65; 0.83

evident concentration quenching (previosly observed @ lower concentrations)*

*A. Tuer et al., J. Biomed. Opt. (2010), 15, 026018

Two-photon absorption cross-sections of eosin and hematoxylin – J. Parravicini, E. Hasani, L. Tartara

Experimental estimation

- relative measurement calibrated with reference sample

$$\delta_H^* = \delta_H \phi_H$$

$$\delta_H^* = \delta_A \frac{\phi_A \eta_A C_A F_H}{\eta_H C_H F_A},$$

- REFERENCE (Alexa 488) δ_A = cross section ϕ_A = quantum yield η_A = collection efficiency C_A = concentration F_A = fluorescence photons (per second)
- SAMPLE (Hematoxylin) δ_H = cross section ϕ_H = quantum yield δ_H = $\delta_H \phi_H$ = action cross section η_H = collection efficiency C_H = concentration F_H = fluorescence photons (per second)

Spectral two-photon cross section hematoxylin

*A. Tuer et al., J. Biomed. Opt. (2010), **15**, 026018

One-photon vs. Two-photon

Sample imaging

Mouse ovary cells

Summary

➔ two-photon spectral features od Eosin & Hematoxylin in DI water

 \rightarrow confirmed good nonlinear fluorescence in standard λ range

➔ marked concentration quenching for both dyes

E & H staining is a good choice for twophoton fluorescence microscopy

J. Parravicini, et al., Appl. Sci. Vol. 12, 3938 (2022)
J. Parravicini, et al., J. Biophotonics Vol. 13. e202000141 (2020)
E. Hasani, et al., J. Microsc. Vol. 270, 210-216 (2018)

Thanks for your attention

INO-CNR Istituto Nazionale di Ottica

Jacopo Parravicini, E. Hasani, L. Tartara jacopo.parravicini@unifi.it

Profilo scientifico accademico