Measurement of the angular correlation between the two gamma rays emitted in the radioactive decays of ⁶⁰Co with two NaI(TI) scintillators

Speakers: Nicola Nicassio, Rosemarie Pirlo

Co-authors: E. C. Amato, A. Anelli, M. Barbieri, D. Cataldi, V. Cellamare, D. Cerasole, F. Conserva, S. De Gaetano, D. Depalo, A. Digennaro, E. Fiorente, F. Gargano, D. Gatti, P. Loizzo, F. Loparco, O. Mele, G. Perfetto, R. Pillera, E. Schygulla, D. Troiano

Didactic purpose

Target

• Laboratory course for undergraduate students

Goals

- Understanding the interaction of photons with matter
- Operating and becoming familiar with scintillators
- Setting up an experiment to validate a theoretical model

Theoretical prediction

Most probable decay channel

• $\begin{array}{ccc} {}^{60}_{27}Co
ightarrow {}^{60}_{28}Ni^* + e^- + \overline{\nu}_e
ightarrow {}^{60}_{28}Ni
ightarrow e^- + \overline{\nu}_e + \gamma_1 + \gamma_2 \end{array}$

Lifetime of ${}^{60}_{28}Ni^* < ps$

• γ_1 and γ_2 are emitted in coincidence

An angular correlation is expected between γ_1 and γ_2 (Hamilton, 1940) • $W(\theta) \propto 1 + \frac{1}{9} cos^2 \theta + \frac{1}{24} cos^4 \theta$

Gamma-ray spectroscopy

The detection of γ rays is based on their interaction with matter

- Photoelectric effect
- Compton scattering
- Pair production

Properties of a γ -ray detector

- Conversion medium for incident photons
- Conventional detectors for electrons produced in the γ -ray interaction

Our experiment

- NaI(TI) scintillators equipped with PMTs
- Commonly available in laboratories for undergraduate physics students

Experimental setup

⁶⁰Co disk source

- $A \approx 5 kBq$
- $R = 0.5 \, cm, L = 1 \, mm$
- 2 Nal(Tl) scintillators coupled with PMTs
- S0: R = 8.2 cm, L = 8.2 cm, Dist = 20.0 cm
- S1: R = 5.8 cm, L = 5.8 cm, Dist = 14.1 cm

Digital oscilloscope

- Measurement of voltage signals and charge
 NIM modules
- Fan-in/fan-out, Discriminator, Logic unit

2 rails

- A fixed rail for SO
- A mobile rail for S1

Trigger logic

Data acquisition

- Channel 1: Signal from SO
- Channel 2: Signal from S1
- Channel 3: Trigger

Trigger configurations

- S0 v S1: energy calibration
- S0 & S1: correlation studies

Pulse shape

- Rise time: $\tau_{RC} = 15 ns$
- Fall time: $\tau_{sc} = 230 \ ns$

Energy calibration

Goal

• Conversion of charge signals into energy depositions in scintillators

Calibration points

- ⁶⁰Co: 1.17 MeV, 1.33 MeV, 2.50 MeV
- ¹³⁷Cs: 0.662 MeV
- Pedestal: null energy deposition (trigger on the other scintillator)
- Charge extracted through Gaussian fits to the full energy peaks
- Linear dependence is found

Energy resolution

- S0: $\sigma_E/E \approx 2.5 \%$ at 1 MeV
- S1: $\sigma_E/E \approx 5.0$ % at 1 MeV

Data analysis with ⁶⁰Co source

Event rates with ⁶⁰Co (S1&S2)

- Peaks at ⁶⁰Co photon energies: full energy deposition in S0 and S1
- Horizontal/vertical bands: full energy deposition only in S0 or S1
- Diagonal bands: scattered photons in S0/S1 reach S1/S0

Main background sources

- ⁴⁰K in windows of PMTs: 1.461 MeV
- ²⁰⁸Tl in scintillators: 2.610 MeV
- Cosmic rays

Event selection

•
$$\left(\frac{E_0 - 1.17 \ MeV}{0.075 \ MeV}\right)^2 + \left(\frac{E_0 - 1.33 \ MeV}{0.150 \ MeV}\right)^2 < 1$$

• $\left(\frac{E_0 - 1.33 \ MeV}{0.075 \ MeV}\right)^2 + \left(\frac{E_0 - 1.17 \ MeV}{0.150 \ MeV}\right)^2 < 1$

Data analysis without ⁶⁰Co source

Event rates without ⁶⁰Co (S1&S2)

- Peaks at ⁶⁰Co photon energies: disappear
- Horizontal/vertical bands: disappear
- Diagonal bands: background photons only

Main background sources

- ⁴⁰K in windows of PMTs: 1.461 MeV
- ²⁰⁸Tl in scintillators: 2.610 MeV
- Cosmic rays

Event selection

•
$$\left(\frac{E_0 - 1.17 \ MeV}{0.075 \ MeV}\right)^2 + \left(\frac{E_0 - 1.33 \ MeV}{0.150 \ MeV}\right)^2 < 1$$

• $\left(\frac{E_0 - 1.33 \ MeV}{0.075 \ MeV}\right)^2 + \left(\frac{E_0 - 1.17 \ MeV}{0.150 \ MeV}\right)^2 < 1$

Results

Measurements

- Scan of [90°, 180°] with 15° steps
- Signal rates calculated as difference between rate with and without source

Fit model

• $r(\theta) = r_0 (1 + a \cos^2 \theta + b \cos^4 \theta)$

Correlation parameters

Fit parameters	Expected parameters
$a = 0.249 \pm 0.058$	a = 0.125
$b = -0.064 \pm 0.0588$	b = 0.0416

Compatibility within 2σ with expectations \rightarrow ... there is room for improvement!

Tips & tricks

- Low activity source ⇒ Scintillators had to be close to the source ⇒ Large uncertainty on the opening angle (16°)
 ✓ Use of a higher activity source to keep scintillators farther from the source
- Fixed disk-like source ⇒ The projected cross section of the source on the mobile scintillator changed with the rotation angle
 ✓ Use of a rotating source to compensate for the asymmetry
- Statistics for signal rate limited by the size of the scintillators
 ✓ Use of larger scintillators (especially S1)

For further reading:

"Measurement of the angular correlation between the two gamma rays emitted in the radioactive decays of a 60Co source with two NaI(TI) scintillators" - E.C. Amato et al 2022 Eur. J. Phys. 43 055802